Last active
October 25, 2022 06:11
-
-
Save InnovArul/7af1684ccc50fa245954da2cb4a5eca1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from turtle import forward | |
import torch | |
import torch.nn as nn, torch.nn.functional as F | |
class CNN(nn.Module): | |
def __init__(self) -> None: | |
super().__init__() | |
self.conv1 = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=6, stride=1, padding=2) | |
self.RL1 = nn.ReLU() | |
self.pool1 = nn.MaxPool2d(2) | |
self.conv2 = nn.Conv2d(in_channels=8, out_channels=16, kernel_size=5, stride=1, padding=2) | |
self.RL2 = nn.ReLU() | |
self.pool2 = nn.MaxPool2d(2) | |
self.conv3 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=4, stride=1, padding=2) | |
self.RL3 = nn.ReLU() | |
self.pool3 = nn.MaxPool2d(2) | |
self.conv4 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=2) | |
self.RL4 = nn.ReLU() | |
self.pool4 = nn.MaxPool2d(2) | |
self.flatten = nn.Flatten() | |
self.fc1 = nn.Linear(64*5*2, 8) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.RL1(x) | |
x = self.pool1(x) | |
x = self.conv2(x) | |
x = self.RL2(x) | |
x = self.pool2(x) | |
x = self.conv3(x) | |
x = self.RL3(x) | |
x = self.pool3(x) | |
x = self.conv4(x) | |
x = self.RL4(x) | |
x = self.pool4(x) | |
x = self.flatten(x) | |
x = self.fc1(x) | |
x = x.log_softmax(dim=1) | |
x = x.unsqueeze(1) | |
return x | |
if __name__ == '__main__': | |
d = torch.randn(256, 1, 64, 16) | |
m = CNN() | |
o = m(d) | |
print(o.shape) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment