Skip to content

Instantly share code, notes, and snippets.

@InnovArul
Created December 16, 2020 17:10
Show Gist options
  • Save InnovArul/b3c0f7d0cc6cbe593d315beaab062fd9 to your computer and use it in GitHub Desktop.
Save InnovArul/b3c0f7d0cc6cbe593d315beaab062fd9 to your computer and use it in GitHub Desktop.
from torch.utils.data import DataLoader, Dataset
import torch, torch.nn as nn
import numpy as np
class DS(Dataset):
# Constructor
def __init__(self):
super().__init__()
X = list(np.arange(15000))
self.x = X
self.len = len(self.x)
# Getter
def __getitem__(self, index):
return self.x[index]
# Get length
def __len__(self):
return self.len
if __name__ == '__main__':
dataset = DS()
dloader = DataLoader(dataset=dataset, batch_size=360, shuffle=False)
for i, data in enumerate(dloader):
labels = data
print(dataset.x[i*360:(i+1)*360])
print('from dloader', labels)
input()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment