Skip to content

Instantly share code, notes, and snippets.

View InnovArul's full-sized avatar
💭
wandering around in the AI space

Arulkumar InnovArul

💭
wandering around in the AI space
View GitHub Profile
@InnovArul
InnovArul / video_lectures.sh
Created February 9, 2021 01:43
to preprocess dvp video lectures
mv Day.. day_ # move Day folder to day_ folder
# move MTS files to root dir
mv ./01/2019/* .
# to concate MTS files into MP4
ffmpeg -i "concat:$(echo *.MTS | tr ' ' '|')" -strict -2 concat_out.mp4
import torch
import torch.nn.functional as F
is_cuda = True
input = torch.randn(1, 19, 32, 64, requires_grad=True)
target = torch.randint(22, size=(1,32,64,))
print(input.dim())
print("number of out-of-bound targets", (target > 18).sum())
import torch
with torch.autograd.set_detect_anomaly(True):
x = torch.randn(5,6, requires_grad=True)
z = x.sum(-1)
z += z * z
z.sum().backward()
import torch, torch.nn as nn, torch.nn.functional as F
def perform_non_parallelconv(input, convs):
outs = []
for i in range(len(convs)):
o = convs[i](input[:, i])
outs.append(o)
outs = torch.cat(outs, dim=1)
return outs
from torch.utils.data import DataLoader, Dataset
import torch, torch.nn as nn
import numpy as np
class DS(Dataset):
# Constructor
def __init__(self):
super().__init__()
X = list(np.arange(15000))
self.x = X
import torch, torch.nn as nn
import torch.nn.functional as F
import os, sys
import copy
import torch.optim as optim
class ConvReLU(nn.Module):
def __init__(self, indim, outdim):
super().__init__()
self.conv = nn.Conv2d(indim, outdim, kernel_size=1)
def get_dataloader_from_pth(path, batch_size=4):
contents = torch.load(path)
dataset = torch.utils.data.TensorDataset(contents['x'], contents['y'])
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
shuffle=True, num_workers=2)
return dataloader
#----------------------------------------------------------------------
import os.path as osp
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
import imgaug as ia
import imgaug.augmenters as iaa
print("loaded")
prob = 0.5
sometimes = lambda aug: iaa.Sometimes(prob, aug)
output_shape=(473,473)
seq = iaa.Sequential([
# apply the following augmenters to most images
iaa.Fliplr(0.5),
sometimes(iaa.Affine(
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
from torch.autograd import Variable
import matplotlib.pyplot as plt