- Install
- Shell exports
- Directory explanations
- Automatic Imports
- Private repo access
- Guard (automatic go run)
- Godo
- Spurious
- AWS SDK with Go (inc. some old possibly broken examples)
- Build and Compilation
- Dependency information with
go list
- Dependencies with godeps
- Dependencies with gb
- Dependencies with glide
- Documentation
- Testing
- Logging
- Bits, Bytes, Runes
- Code Examples
- Init
- New vs Make
- Custom Types
- Function Types
- Structure: Var vs Type
- Reference vs Value
- See all methods of a <Type>
- Set time
- Convert Struct into JSON
- Extract only JSON you need
- Nested JSON handling
- Pretty Printing JSON String
- Nested YAML handling
- Unknown YAML Structure
- Sorting Structs
- Read User Input
- Web Server
- Middleware
- Sessions
- HTTP Requests with Timeouts
- S3 GetObject
- Compile time variables
- TLS HTTP Request
- Custom HTTP Request
- HTTP GET Web Page
- Pointers
- Array Pointer
- Type Assertion
- Line Count
- Measuring time
- Reading a file in chunks
- Time and Channels
- Quit a Channel
- Starting and Stopping things with Channels
- Channel Pipelines
- Templating
- Error handling with context
- Socket programming with TCP server
- Comparing maps
- Embedded Structs
- Zip File Contents
- OAuth
- RPC
- Enumerator IOTA
- FizzBuzz
- Execute Shell Command
- New Instance Idiom
- Mutating Values
- Draining Connections
brew install go
export GOPATH=~/path/to/your/golang/projects
export PATH=~/path/to/your/golang/projects/bin:$PATH
Note: the latter item allows you to locally build and execute Go based binaries
By default you store all your Golang projects within a single directory. This will be fixed in a future Go release as the developers recognise it can be problematic sometimes.
So within the $GOPATH
directory workspace there should be three directories:
src
: holds source codepkg
: holds compiled bitsbin
: holds executables
Note: I very rarely even look at the
pkg
orbin
directories
But for now, make sure you have any new Go project you work on placed inside the following directory structure...
└── src
├── github.com
│ ├── <your_username>
│ │ └── <your_repo_name>
go get golang.org/x/tools/cmd/goimports
Now either run goimports
from the shell OR use vim-go plugin with :GoImports
for the buffer you're working with
go get
uses https; so instead force it to use ssh:
git config --global url."[email protected]:".insteadOf "https://github.com/"
Note you can restrict it to a specific organisation as well:
git config --global url."[email protected]:foo/".insteadOf "https://github.com/foo/"
So when you want a private repository: [email protected]:foo/private.git
You can run:
go get github.com/foo/private
UPDATE: this isn't good practice. Instead use Godo (see below for example)
Follow this guide (https://gist.github.com/Integralist/b675a263897680e02fbd) for using Guard to get real-time notifications for when changes occur in your Go programming files, and automatically trigger go run
.
Example taken from my own project go-requester
package main
import (
"fmt"
"os"
do "gopkg.in/godo.v2"
)
func tasks(p *do.Project) {
if pwd, err := os.Getwd(); err == nil {
do.Env = fmt.Sprintf("GOPATH=%s/vendor::$GOPATH", pwd)
}
p.Task("server", nil, func(c *do.Context) {
c.Start("main.go ./config/page.yaml", do.M{"$in": "./"})
}).Src("**/*.go")
}
func main() {
do.Godo(tasks)
}
If you need Spurious set-up then update the aws.config
accordingly:
_dyn := dynamodb.New(&aws.Config{
Region: "eu-west-1",
DisableSSL: true,
Endpoint: "dynamodb.spurious.localhost:32770", // change port number to appropriate value
})
_s3 := s3.New(&aws.Config{
Region: "eu-west-1",
Endpoint: "s3.spurious.localhost:32769", // change port number to appropriate value
DisableSSL: true,
S3ForcePathStyle: true,
})
Note: remember to set the AWS environment variables in your shell so Dynamo can pick them up (all other spurious services are fine without them)
export AWS_ACCESS_KEY_ID=development_access; export AWS_SECRET_ACCESS_KEY=development_secret; go run application.go
To populate your Spurious set-up you can use Ruby like so: https://gist.github.com/Integralist/58b25f860773d8d2dd3f
Usage:
<binary_name> <aws_account_id> <aws_role>
Code:
package main
import (
"fmt"
"log"
"os"
"github.com/aws/aws-sdk-go/aws"
"github.com/aws/aws-sdk-go/aws/session"
"github.com/aws/aws-sdk-go/service/sts"
)
var (
accessKey = os.Getenv("AWS_ACCESS_KEY_ID")
secretKey = os.Getenv("AWS_SECRET_ACCESS_KEY")
region = os.Getenv("AWS_REGION")
)
func main() {
args := os.Args[1:]
account := args[0]
role := args[1]
sess := session.New(
&aws.Config{
Region: aws.String(region),
},
)
svc := sts.New(sess)
output, err := svc.AssumeRole(&sts.AssumeRoleInput{
RoleArn: aws.String(fmt.Sprintf("arn:aws:iam::%s:role/%s", account, role)),
RoleSessionName: aws.String("temp"),
})
if err != nil {
log.Fatalf("Unable to assume role: %v", err.Error())
}
os.Setenv("AWS_ACCESS_KEY_ID", aws.StringValue(output.Credentials.AccessKeyId))
os.Setenv("AWS_SECRET_ACCESS_KEY", aws.StringValue(output.Credentials.SecretAccessKey))
os.Setenv("AWS_SESSION_TOKEN", aws.StringValue(output.Credentials.SessionToken))
fmt.Printf("AWS_ACCESS_KEY_ID: %s\n", os.Getenv("AWS_ACCESS_KEY_ID"))
fmt.Printf("AWS_SECRET_ACCESS_KEY: %s\n", os.Getenv("AWS_SECRET_ACCESS_KEY"))
fmt.Printf("AWS_SESSION_TOKEN: %s\n", os.Getenv("AWS_SESSION_TOKEN"))
}
Usage:
go run local/create.go -queue "producer"
Code:
package main
import (
"encoding/json"
"flag"
"fmt"
"log"
"os"
"os/exec"
"github.com/aws/aws-sdk-go/aws"
"github.com/aws/aws-sdk-go/aws/awserr"
"github.com/aws/aws-sdk-go/aws/session"
"github.com/aws/aws-sdk-go/service/sqs"
)
type network []struct {
Host string
HostPort string
}
type spurious struct {
Sqs network `json:"spurious-sqs"`
S3 network `json:"spurious-s3"`
Dynamo network `json:"spurious-dynamo"`
}
var (
svc *sqs.SQS
queueName string
regionName string
endpointName string
cmdOut []byte
err error
spur spurious
)
var region = flag.String("region", "eu-west-1", "Name of region to create the resource within")
var queue = flag.String("queue", "producer", "Name of queue to be created")
var endpoint = flag.String("endpoint", "", "Spurious endpoint")
func init() {
flag.Parse()
queueName = *queue
regionName = *region
endpointName = *endpoint
if endpointName == "" {
cmdName := "spurious"
cmdArgs := []string{"ports", "--json"}
if cmdOut, err = exec.Command(cmdName, cmdArgs...).Output(); err != nil {
fmt.Fprintln(os.Stderr, "There was an error running 'spurious ports --json' command: ", err)
os.Exit(1)
}
json.Unmarshal(cmdOut, &spur)
endpointName = spur.Sqs[0].Host + ":" + spur.Sqs[0].HostPort
}
svc = sqs.New(
session.New(),
&aws.Config{
Region: aws.String(regionName),
DisableSSL: aws.Bool(true),
Endpoint: aws.String(endpointName),
})
}
func main() {
params := &sqs.CreateQueueInput{
QueueName: aws.String(queueName),
}
resp, err := svc.CreateQueue(params)
if err != nil {
if awsErr, ok := err.(awserr.Error); ok {
// Get error details
log.Println("Error:", awsErr.Code(), awsErr.Message())
// Prints out full error message, including original error if there was one.
log.Println("Error:", awsErr.Error())
// Get original error
if origErr := awsErr.OrigErr(); origErr != nil {
// operate on original error.
}
} else {
fmt.Println(err.Error())
}
}
fmt.Println(resp)
}
UPDATE the following code examples are now old and probably don't work any more
In the below code we use go
blocks for parallelising "copy" requests to S3, which is thread-safe because we're not mutating any values. But we can't quite get away with that inside the getS3Locations
function as we need to mutate a slice (and that's not thread-safe) so we then use an interesting pattern where by we use channels to synchronise the data after the parallelisation.
Note: DynamoDB specifically is confusing.
Also, for printing Structs use:fmt.Printf("%+v", myStruct)
(ensures the keys are included)
package main
import (
"fmt"
"github.com/awslabs/aws-sdk-go/aws"
"github.com/awslabs/aws-sdk-go/service/dynamodb"
"github.com/awslabs/aws-sdk-go/service/s3"
"os"
"strings"
"sync"
)
func sequencerTableRecords(sequencer string) *dynamodb.ScanOutput {
svc := dynamodb.New(&aws.Config{
Region: "eu-west-1",
DisableSSL: true,
Endpoint: "dynamodb.spurious.localhost:32791",
})
params := &dynamodb.ScanInput{
TableName: aws.String(sequencer),
}
resp, err := svc.Scan(params)
if awserr := aws.Error(err); awserr != nil {
// A service error occurred.
fmt.Println("Error:", awserr.Code, awserr.Message)
} else if err != nil {
// A non-service error occurred.
panic(err)
}
return resp
}
func getComponentVersions(records *dynamodb.ScanOutput) map[string]string {
components := make(map[string]string)
for _, items := range records.Items {
item := *items
components[*item["key"].S] = *item["value"].N
}
return components
}
func getS3Locations(components map[string]string, s3Path string, lookup string) map[string]string {
svc := dynamodb.New(&aws.Config{
Region: "eu-west-1",
DisableSSL: true,
Endpoint: "dynamodb.spurious.localhost:32791",
})
collectedLocations := []*dynamodb.QueryOutput{}
c := make(chan *dynamodb.QueryOutput, len(components))
done := make(chan int, len(components))
locations := make(map[string]string)
// Parallelise retrieval of data from DynamoDB
for componentKey, componentVersion := range components {
go func(componentKey, componentVersion string) {
params := &dynamodb.QueryInput{
TableName: aws.String(lookup),
ConsistentRead: aws.Boolean(true),
Select: aws.String("SPECIFIC_ATTRIBUTES"),
AttributesToGet: []*string{
aws.String("component_key"),
aws.String("location"),
},
KeyConditions: &map[string]*dynamodb.Condition{
"component_key": &dynamodb.Condition{
ComparisonOperator: aws.String("EQ"),
AttributeValueList: []*dynamodb.AttributeValue{
&dynamodb.AttributeValue{
S: aws.String(componentKey),
},
},
},
"batch_version": &dynamodb.Condition{
ComparisonOperator: aws.String("EQ"),
AttributeValueList: []*dynamodb.AttributeValue{
&dynamodb.AttributeValue{
N: aws.String(componentVersion),
},
},
},
},
}
resp, err := svc.Query(params)
if awserr := aws.Error(err); awserr != nil {
// A service error occurred.
fmt.Println("Error:", awserr.Code, awserr.Message)
} else if err != nil {
// A non-service error occurred.
panic(err)
} else {
c <- resp
done <- 1
}
}(componentKey, componentVersion)
}
// Wait until all data is successfully collated from DynamoDB
for i := len(components); i > 0; {
select {
case item := <-c:
collectedLocations = append(collectedLocations, item)
case <-done:
i--
}
}
for _, items := range collectedLocations {
item := *items
ref := *item.Items[0]
componentLocation := s3Path + *ref["location"].S
componentKey := extractComponentFromKey(*ref["component_key"].S)
locations[componentKey] = componentLocation
}
return locations
}
func extractComponentFromKey(componentKey string) string {
return strings.Split(componentKey, "/")[0]
}
func copyS3DataToNewLocation(event string, s3Bucket string, s3Locations map[string]string) {
svc := s3.New(&aws.Config{
Region: "eu-west-1",
Endpoint: "s3.spurious.localhost:32790",
DisableSSL: true,
S3ForcePathStyle: true,
})
var wg sync.WaitGroup
for component, location := range s3Locations {
destination := "archive/" + event + "/" + component
wg.Add(1)
go func(location, destination string) {
defer wg.Done()
// fmt.Println(s3Bucket)
// fmt.Println(s3Bucket + "/" + location)
// fmt.Println(destination)
params := &s3.CopyObjectInput{
Bucket: aws.String(s3Bucket),
CopySource: aws.String(s3Bucket + "/" + location),
Key: aws.String(destination),
}
_, err := svc.CopyObject(params)
if awserr := aws.Error(err); awserr != nil {
// A service error occurred.
fmt.Println("Error:", awserr.Code, awserr.Message)
} else if err != nil {
// A non-service error occurred.
panic(err)
}
}(location, destination)
}
wg.Wait()
}
func main() {
event := os.Args[1]
s3Bucket := os.Args[2]
s3Path := os.Args[3]
sequencer := os.Args[4]
lookup := os.Args[5]
sequence_records := sequencerTableRecords(sequencer)
components := getComponentVersions(sequence_records)
s3Locations := getS3Locations(components, s3Path, lookup)
copyS3DataToNewLocation(event, s3Bucket, s3Locations)
}
In above example there are API issues with DynamoDB - after about 6 requests a second the API errors. If you flatten out the requests so they are no longer running highly concurrently, then the speed of it slows down so badly that AWS Lambda (which is running the binary) times out. Meaning we need to do things differently... i.e. we need to request all S3 objects instead and partition/filter the unique values from that instead:
Note: S3 objects are listed alphabetically
func getS3ObjectSubset(bucket, source, marker string) *s3.ListObjectsOutput {
svc := s3.New(&aws.Config{
Region: "eu-west-1",
})
params := &s3.ListObjectsInput{
Bucket: aws.String(bucket),
Prefix: aws.String(source),
Marker: aws.String(marker),
}
resp, err := svc.ListObjects(params)
if awserr := aws.Error(err); awserr != nil {
fmt.Println("Error:", awserr.Code, awserr.Message)
} else if err != nil {
panic(err)
}
return resp
}
func main() {
bucket := os.Args[1] // some-bucket
source := os.Args[2] // some/object/path/to/prefix
marker := "" // means to start off from the very first object (overwritten)
var resp *s3.ListObjectsOutput
processing := true
collectedObjects := []*s3.ListObjectsOutput{}
for processing {
resp = getS3ObjectSubset(bucket, source, marker)
collectedObjects = append(collectedObjects, resp)
marker = *resp.Contents[len(resp.Contents)-1].Key
if *resp.IsTruncated == false {
processing = false
}
}
for _, s3SubSet := range collectedObjects {
for _, items := range s3SubSet.Contents {
fmt.Println(*items.Key)
}
}
}
GOOS=darwin GOARCH=386 go build foo.go
Here is a quick reference:
$GOOS $GOARCH
darwin 386 -- 32 bit MacOSX
darwin amd64 -- 64 bit MacOSX
freebsd 386
freebsd amd64
linux 386 -- 32 bit Linux
linux amd64 -- 64 bit Linux
linux arm -- RISC Linux
netbsd 386
netbsd amd64
openbsd 386
openbsd amd64
plan9 386
windows 386 -- 32 bit Windows
windows amd64 -- 64 bit Windows
One time only commands:
go get github.com/mitchellh/gox
gox -build-toolchain
(only necessary for 1.4.x and lower)
Compilation (example is for AWS Lambda usage where only a single binary is needed):
gox -osarch="linux/amd64" -osarch="darwin/amd64" -osarch="windows/amd64" -output="foobar.{{.OS}}"
This will generate three files:
foobar.darwin
foobar.linux
foobar.windows.exe
Use the -a
flag when running go build
.
In short, if you dont' use go build -a -v .
then Go won't know if any packages are missing (you can find the gory details here)
To see a list of dependencies for a given Go package you can utilise the go list
command:
go list -json strconv
Which returns:
{
"Dir": "/usr/local/Cellar/go/1.5.2/libexec/src/strconv",
"ImportPath": "strconv",
"Name": "strconv",
"Doc": "Package strconv implements conversions to and from string representations of basic data types.",
"Target": "/usr/local/Cellar/go/1.5.2/libexec/pkg/darwin_amd64/strconv.a",
"Goroot": true,
"Standard": true,
"Root": "/usr/local/Cellar/go/1.5.2/libexec",
"GoFiles": [
"atob.go",
"atof.go",
"atoi.go",
"decimal.go",
"doc.go",
"extfloat.go",
"ftoa.go",
"isprint.go",
"itoa.go",
"quote.go"
],
"IgnoredGoFiles": [
"makeisprint.go"
],
"Imports": [
"errors",
"math",
"unicode/utf8"
],
"Deps": [
"errors",
"math",
"runtime",
"unicode/utf8",
"unsafe"
],
"TestGoFiles": [
"internal_test.go"
],
"XTestGoFiles": [
"atob_test.go",
"atof_test.go",
"atoi_test.go",
"decimal_test.go",
"example_test.go",
"fp_test.go",
"ftoa_test.go",
"itoa_test.go",
"quote_test.go",
"strconv_test.go"
],
"XTestImports": [
"bufio",
"bytes",
"errors",
"fmt",
"log",
"math",
"math/rand",
"os",
"reflect",
"runtime",
"strconv",
"strings",
"testing",
"time",
"unicode"
]
}
If you don't specify the -json
flag then the default behaviour is to filter out the ImportPath
field from the above JSON output. For example:
go list strconv
Will return just the import path strconv
.
Documentation:
go help list | less
You can also utilise Go's templating functionality on the returned JSON object by adding the -f
flag:
go list -f '{{join .Deps " "}}' strconv
Which filters out the Deps
field, joins up all items it contains using whitespace and subsequently returns:
errors math runtime unicode/utf8 unsafe
You can do more complex things such as:
go list -f '{{.ImportPath}} -> {{join .Imports " "}}' compress/...
Which will return something like:
compress/bzip2 -> bufio io sort
compress/flate -> bufio fmt io math sort strconv
compress/gzip -> bufio compress/flate errors fmt hash hash/crc32 io time
compress/lzw -> bufio errors fmt io
compress/zlib -> bufio compress/flate errors fmt hash hash/adler32 io
When running go get <dependency>
locally, Go will stick the dependency in the folder defined by your $GOPATH
variable. So when you build your code into a binary using go build <script>
it'll bake the dependencies into the binary (i.e. the binary is statically linked).
But if someone pulls down your repo and tries to do a build they'll need to have a network connection to pull down the dependencies, as their $GOPATH
might not have those dependencies yet (unless the user manually executes go get
for each dependency required). Also the dependencies they subsequently pull down could be a more recent (and untested version) of each dependency.
So to make this situation better we can use http://godoc.org/github.com/tools/godep (https://github.com/tools/godep) which sticks all your dependencies within a Godeps
folder inside your project directory. You can then use godep save -r ./...
to automatically update all your references to point to that local folder.
Note: you might need to remove the
Godeps
folder and rungo get
if you get strange conflicts. The./...
means to target all.go
files
This way users who clone your repo don't need an internet connection to pull the dependencies, as they already have them. But also they'll have the correct versions of the dependencies. This acts like a Gemfile.lock
as you would typically find in the Ruby world.
find . -name '*.go' -exec \
sed -i '' 's/github\.com\/bbc\/mozart\-config\-api\/src\/Godeps\/_workspace\/src\///' {} \;
go get -u github.com/constabulary/gb/...
gb vendor fetch <pkg>
gb build all
You'll need the following structure:
├── src
│ ├── foo
│ │ └── main.go
└── vendor
├── manifest
└── src
The vendor
directory is auto-generated by the gb vendor fetch <pkg>
command.
This is now my preferred dependency management tool, as it works just like existing tools in other languages (e.g. Ruby's Bundler or Node's NPM) and so consistency is a plus.
It also provides the ability (like gb) to not commit dependencies but have specific versions vendored when running a simple command.
go get github.com/Masterminds/glide
export GO15VENDOREXPERIMENT=1 # or use 1.6
glide init # generates glide.yaml
glide install # installs from lock file (creates it if not found)
glide update # updates dependencies and updates lock file
glide list # shows vendored deps
go test $(glide novendor) # test only your package (not vendored packages)
Note: to add a new dependency
glide get <pkg_name>
Godoc
is the original implementation for viewing documentation. Previous to Godoc
there was go doc
, but that was removed and then added back with totally different functionality.
The syntax structure for go doc
is as follows:
go doc <pkg>
go doc <sym>[.<method>]
go doc [<pkg>].<sym>[.<method>]
Here are some examples of using go doc
:
go doc json # same as go doc encoding/json
go doc json.Number
go doc json.Number.Float64
Here is the same but using godoc
(where the syntax structure is godoc <pkg> <symbol>
):
godoc encoding/json # unlike "go doc json", "godoc json" doesn't work as it's not a fully qualified path
godoc encoding/json Number
godoc -src builtin make | less
Unlike with
go doc
,godoc
doesn't allow filtering by<method>
It only goes as far as<pkg> <symbol>
You can use
<pkg> <symbol> <method>
and the method will be included in the results
but you'll need to search for the method manually
godoc -src net/http Request ParseForm | less
here is a similar result usinggo doc
go doc http.Request.ParseForm | less
The purpose of go doc
was to provide a simplistic cli documentation viewer, where as Godoc
has many more features available.
The go doc
command also works not only with Go's own library's but your own custom packages as well.
There are some differences in what is returned though between godoc
and go doc
(mainly the latter is more succinct/compact so you can find the functions/types you're after and then you can expand into those once you've found them; godoc
is harder to sift through on the command line)...
type Encoder struct {
// contains filtered or unexported fields
}
An Encoder writes JSON objects to an output stream.
func NewEncoder(w io.Writer) *Encoder
NewEncoder returns a new encoder that writes to w.
func (enc *Encoder) Encode(v interface{}) error
Encode writes the JSON encoding of v to the stream, followed by a
newline character.
See the documentation for Marshal for details about the conversion of Go
values to JSON.
type Encoder struct {
// Has unexported fields.
}
An Encoder writes JSON objects to an output stream.
func NewEncoder(w io.Writer) *Encoder
func (enc *Encoder) Encode(v interface{}) error
Notice the functions don't have their documentation notes printed with
go doc
One other thing godoc
has over go doc
is the ability to view the source code using the -src
flag:
godoc -src builtin make | less
The godoc
tool also has a full browser documentation suite available and allows you to generate HTML documentation for your project...
Start a local documentation server and allow indexing (which takes a few minutes; you have to just keep trying the search until it's done)
godoc -http ':6060' -index
You can then open a new terminal pane and search via cli if you prefer (rather than open up a browser to http://localhost:6060/)
godoc -q tls | less
You can also have the playground available if you need it in the browser, but it does require an internet connection to compile:
godoc -http ':6060' -play
Note: see also examples here
Test files are placed in the same directory as the file/package being tested. The convention is to use the same file name but suffix it with _test
. So foo.go
would have another file next to it called foo_test.go
.
Run the tests: go test -v ./...
You can also run a specific test like so: go test -v command/config_test.go command/config.go
Note: remember that your test file should have the same package name as your code being tested. This means the test file will have access to all the public functions and variables of that package (and so subsequently it'll have access to the code being tested)
Here's our program:
package main
import "fmt"
type FooIO interface {
Read() string
}
type Foo struct{}
func (f *Foo) Read() string {
return "We READ something from disk"
}
func Stuff(f FooIO) string {
return f.Read()
}
func main() {
foo := &Foo{}
contents := Stuff(foo)
fmt.Println(contents)
}
Here's our test:
package main
import (
"testing"
"github.com/stretchr/testify/assert"
)
type FakeFoo struct{}
func (s *FakeFoo) Read() string {
return "We 'pretend' to READ something from disk"
}
func TestSomething(t *testing.T) {
assert := assert.New(t)
foo := &FakeFoo{}
contents := Stuff(foo)
assert.Equal(contents, "We 'pretend' to READ something from disk")
}
Faking HTTP and WebServers can be a bit tricky:
package requester
import (
"bytes"
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
"net/http/httptest"
"os"
"strconv"
"testing"
"time"
"github.com/bbc/mozart-requester/src/aggregator"
"github.com/julienschmidt/httprouter"
)
func TestSuccessResponse(t *testing.T) {
upstream := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
fmt.Fprintln(w, `{"head":[ "foo" ],"bodyInline":"bar","bodyLast":[ "baz" ]}`)
}))
defer upstream.Close()
router := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
Process(w, r, httprouter.Params{})
}))
defer router.Close()
var config = []byte(fmt.Sprintf(`{
"components":[
{"id":"foo","endpoint":"%s","must_succeed":true},
{"id":"bar","endpoint":"%s","must_succeed":true}
]
}`, upstream.URL, upstream.URL))
req, err := http.NewRequest("POST", router.URL, bytes.NewBuffer(config))
client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
panic(err)
}
defer resp.Body.Close()
body, _ := ioutil.ReadAll(resp.Body)
var result aggregator.Result
json.Unmarshal(body, &result)
expectedStatus := "success"
if result.Summary != expectedStatus {
t.Errorf("The response:\n '%s'\ndidn't match the expectation:\n '%s'", result.Summary, expectedStatus)
}
expectedLength := 2
if len(result.Components) != expectedLength {
t.Errorf("The response:\n '%d'\ndidn't match the expectation:\n '%d'", len(result.Components), expectedLength)
}
}
func TestFailureResponse(t *testing.T) {
healthyUpstream := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
fmt.Fprintln(w, `{"head":[ "foo" ],"bodyInline":"bar","bodyLast":[ "baz" ]}`)
}))
defer healthyUpstream.Close()
failingUpstream := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "text/plain; charset=utf-8")
w.WriteHeader(http.StatusNotFound)
fmt.Fprintln(w, "404 page not found")
}))
defer failingUpstream.Close()
router := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
Process(w, r, httprouter.Params{})
}))
defer router.Close()
var config = []byte(fmt.Sprintf(`{
"components":[
{"id":"foo","endpoint":"%s","must_succeed":true},
{"id":"bar","endpoint":"%s","must_succeed":true}
]
}`, healthyUpstream.URL, failingUpstream.URL))
req, err := http.NewRequest("POST", router.URL, bytes.NewBuffer(config))
client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
panic(err)
}
defer resp.Body.Close()
body, _ := ioutil.ReadAll(resp.Body)
var result aggregator.Result
json.Unmarshal(body, &result)
expectedSummary := "failure"
if result.Summary != expectedSummary {
t.Errorf("The response:\n '%s'\ndidn't match the expectation:\n '%s'", result.Summary, expectedSummary)
}
expectedLength := 2
if len(result.Components) != expectedLength {
t.Errorf("The response length:\n '%d'\ndidn't match the expectation:\n '%d'", len(result.Components), expectedLength)
}
expectedStatus := []int{}
for _, value := range result.Components {
if value.Status == 404 {
expectedStatus = append(expectedStatus, value.Status)
}
}
if len(expectedStatus) < 1 || len(expectedStatus) > 1 {
t.Errorf("The response length:\n '%d'\ndidn't match the expectation:\n '%d'", len(expectedStatus), 1)
}
}
func TestSlowResponse(t *testing.T) {
healthyUpstream := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
fmt.Fprintln(w, `{"head":[ "foo" ],"bodyInline":"bar","bodyLast":[ "baz" ]}`)
}))
defer healthyUpstream.Close()
slowUpstream := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
timeout, err := strconv.Atoi(os.Getenv("COMPONENT_TIMEOUT"))
if err != nil {
t.Errorf("COMPONENT_TIMEOUT: %s", err.Error())
}
time.Sleep(time.Duration(timeout) * time.Millisecond)
w.Header().Set("Content-Type", "application/json")
fmt.Fprintln(w, `{"head":[ "foo" ],"bodyInline":"bar","bodyLast":[ "baz" ]}`)
}))
defer slowUpstream.Close()
router := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
Process(w, r, httprouter.Params{})
}))
defer router.Close()
var config = []byte(fmt.Sprintf(`{
"components":[
{"id":"foo","endpoint":"%s","must_succeed":true},
{"id":"bar","endpoint":"%s","must_succeed":true}
]
}`, healthyUpstream.URL, slowUpstream.URL))
req, err := http.NewRequest("POST", router.URL, bytes.NewBuffer(config))
client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
panic(err)
}
defer resp.Body.Close()
body, _ := ioutil.ReadAll(resp.Body)
var result aggregator.Result
json.Unmarshal(body, &result)
expectedStatus := 408
for _, value := range result.Components {
if value.ID == "bar" && value.Status != expectedStatus {
t.Errorf("The response:\n '%d'\ndidn't match the expectation:\n '%d'", value.Status, expectedStatus)
}
}
expectedSummary := "failure"
if result.Summary != expectedSummary {
t.Errorf("The response:\n '%s'\ndidn't match the expectation:\n '%s'", result.Summary, expectedSummary)
}
}
I typically run my tests using Make, but it ultimately looks like this:
pushd src && APP_ENV=test COMPONENT_TIMEOUT=100 go test -v $(glide novendor) && popd
Here's another example of a test needing to fake things:
package retriever
import (
"bytes"
"io/ioutil"
"net/http"
"strings"
"testing"
"github.com/PuerkitoBio/goquery"
)
const href = "http://bar.com/"
const url = "http://foo.com/"
var body string
func fakeNewDocument(url string) (*goquery.Document, error) {
body = strings.Replace(body, "{}", href, 1)
resp := &http.Response{
Status: "200 OK",
StatusCode: 200,
Proto: "HTTP/1.0",
ProtoMajor: 1,
ProtoMinor: 0,
Body: ioutil.NopCloser(bytes.NewBufferString(body)),
ContentLength: int64(len(body)),
Request: &http.Request{},
}
return goquery.NewDocumentFromResponse(resp)
}
func TestRetrieveReturnValue(t *testing.T) {
// {} interpolated with constant's value
body = `
<html>
<body>
<div class="productInfo">
<a href="{}">Bar</a>
</div>
</body>
<html>
`
coll, _ := Retrieve(url, fakeNewDocument)
if response := coll[0]; response != href {
t.Errorf("The response:\n '%s'\ndidn't match the expectation:\n '%s'", response, href)
}
}
func TestRetrieveMissingAttributeReturnsEmptySlice(t *testing.T) {
// href attribute is missing from anchor element
body = `
<html>
<body>
<div class="productInfo">
<a>Bar</a>
</div>
</body>
<html>
`
coll, _ := Retrieve(url, fakeNewDocument)
if response := coll; len(response) > 0 {
t.Errorf("The response:\n '%s'\ndidn't match the expectation:\n '%s'", response, "[http://bar.com/]")
}
}
And...
package scraper
import "testing"
func TestScrapeResults(t *testing.T) {
getItem = func(url string) {
defer wg.Done()
ch <- Item{
"FooTitle",
"FooSize",
"10.00",
"FooDescription",
}
}
urls := []string{
"http://foo.com/",
"http://bar.com/",
"http://baz.com/",
}
result := Scrape(urls)
first := result.Items[0]
var suite = []struct {
response string
expected string
}{
{first.Title, "FooTitle"},
{first.Size, "FooSize"},
{first.UnitPrice, "10.00"},
{first.Description, "FooDescription"},
{result.Total, "30.00"},
}
for _, v := range suite {
if v.response != v.expected {
err(v.response, v.expected, t)
}
}
}
func err(response, expected string, t *testing.T) {
t.Errorf("The response:\n '%s'\ndidn't match the expectation:\n '%s'", response, expected)
}
Using the standard Logger:
info := log.New(os.Stdout, "STUFF: ", log.Ldate|log.Ltime|log.Lshortfile)
info.Println("Starting up!!!")
f, e := os.Create("test.log")
if e != nil {
log.Fatal("Failed to create log file")
}
logfile := log.New(f, "STUFF: ", log.Ldate|log.Ltime|log.Lshortfile)
logfile.Println("Starting up!!!")
Using Logrus:
package main
import (
"os"
log "github.com/Sirupsen/logrus"
)
func main() {
// Standard stdout ASCII logging
log.WithFields(log.Fields{
"animal": "walrus",
}).Info("A walrus appears")
// JSON style structured logging
log.SetFormatter(&log.JSONFormatter{})
f, e := os.Create("logs")
if e != nil {
log.Fatal("Failed to create log file")
}
log.SetOutput(f)
log.WithFields(log.Fields{
"animal": "walrus",
"size": 10,
}).Info("A group of walrus emerges from the ocean")
/*
{
"animal": "walrus",
"level": "info",
"msg": "A group of walrus emerges from the ocean",
"size": 10,
"time": "2015-12-22T13:58:46Z"
}
*/
}
A Unicode "code point" (e.g. 0021
which is equal to !
) is known in Go as a "Rune".
Note: a Rune is actually a synonym for Go's
int32
type
A Unicode "code point" is made up of a single byte.
Computers think in 8-bit bytes (i.e. a single byte is 8 bits).
With 8 bits you can make 256 different bit combinations. But Unicode has way more than 256 characters (it holds code points/characters for every language in the world, so yes a lot more than 256).
- 1 bytes = 08 bits
- 2 bytes = 16 bits
- 3 bytes = 24 bits
- 4 bytes = 32 bits
We could represent a Unicode "code point" with a single Rune (int32
) but not all code points require a full 32 bits and so you'd be wasting lots of space. For example, ASCII only requires 8 bits (or 1 byte) per character.
UTF-8 is a solution to this problem. It uses 8-bit encoding, but one of the bits will be a pointer to another location to continue the bit sequence so the program can identify the overall character being encoded. This allows all Unicode code points to be encoded in 1 to 4 bytes but without the need for all the storage required of a 32 bit set-up.
So as you can now see, UTF-8 is able to use multiple bytes (up to 4) to represent a single Unicode code point.
For example, [E4 B8 96]
are three separate bytes that make up a single Chinese character.
A string is made up of individual bytes, but not every character in the string is necessarily mapped to a single byte (also ASCII charters like \n
and \t
are considered a byte each)
Note: a Rune can consist of multiple bytes (so it's not exactly identical to a Unicode "code point")
package main
import (
"fmt"
"unicode/utf8"
)
func main() {
hello := "您好 world"
fmt.Printf("hex digits: % x\n", hello) // hex digits: e6 82 a8 e5 a5 bd 20 77 6f 72 6c 64
// e6 82 a8 e5 a5 bd == 您好
// 20 == <white space character>
// 77 6f 72 6c 64 == world
r := []rune(hello)
fmt.Printf("UFT-8 encoding of each rune: %x\n", r) // UFT-8 encoding of each rune: [60a8 597d 20 77 6f 72 6c 64]
// 60a8 597d == 您好
// 20 == <white space character>
// 77 6f 72 6c 64 == world
fmt.Println(len(hello)) // 12
// Looks like 'hello' stores 8 characters, but the 2 chinese characters represent more than 2 bytes each
// Instead we'd need to count the Runes...
fmt.Println(utf8.RuneCountInString(hello)) // 8
// The DecodeRuneInString method also returns the number of bytes each Rune occupies...
rune1, size := utf8.DecodeRuneInString("您")
fmt.Printf("Rune: %v\nRune's Byte Size: %v\n", rune1, size)
// Rune: 24744
// Rune's Byte Size: 3
rune2, size := utf8.DecodeRuneInString("好")
fmt.Printf("Rune: %v\nRune's Byte Size: %v\n", rune2, size)
// Rune: 22909 (type: int32)
// Rune's Byte Size: 3
// Type conversion from a integer to a string yields not a stringified number but the UTF-8 representation of that Rune...
fmt.Println(string(rune1)) // 您
fmt.Println(string(rune2)) // 好
fmt.Println(string(r)) // 您好 world
fmt.Println(string(65)) // A
// Use 0x prefix to denote a UTF-8 encoding...
fmt.Println(string(0x60a8)) // 您
fmt.Println(string(0x597d)) // 好
}
When you load a package in Go, only the public functions and variables are exposed for the caller to utilise. So if you need a package to execute some bootstrapping code at the point of it being loaded, then you'll need to stick it inside of an init
function.
Note: you can have multiple
init
functions inside a package e.g. one per file within the package namespace
But be careful with race conditions!
I've hit an issue where we had:
main.go
foo.go
(loaded bymain.go
)bar.go
(loaded byfoo.go
)
Each one of these packages had its own init
function and ultimately the bar.go
's init
function was being run first, followed by the foo.go
's init
function and finally followed by the main.go
's init
function.
The reason this was an issue was because main.go
was loading some environment variables needed by bar.go
but those variables weren't available by the time the bar.go
was running (as that happened before main.go
's init
function had executed.
The solution was to rename all the init
functions to Init
and explicitly call them to bootstrap the package when needed (i.e. they didn't automatically bootstrap themselves and find themselves in a race condition)
func new(Type) *Type
: allocate memory for custom-user typefunc make(Type, size IntegerType) Type
: allocate memory for builtin types (Slice, Map, Chan)
package main
import "fmt"
func main() {
foo := make(map[string]string)
fmt.Println(foo) // map[]
foo["k1"] = "bar"
fmt.Println(foo) // map[k1:bar]
fmt.Println(foo["k1"]) // bar
type bar [5]int
b := new(bar)
fmt.Println(b) // &[0 0 0 0 0]
b[0] = 1
fmt.Println(b) // &[1 0 0 0 0]
}
package main
import (
"bytes"
"fmt"
)
type path []byte // our custom Type
// method attached to our custom Type
func (p *path) TruncateAtFinalSlash() {
i := bytes.LastIndex(*p, []byte("/"))
if i >= 0 {
*p = (*p)[0:i]
}
}
func main() {
pathName := path("/usr/bin/tso") // Conversion from string to path.
pathName.TruncateAtFinalSlash()
fmt.Printf("%s\n", pathName)
}
Alternative example:
package main
import "fmt"
type foo [5]int
func main() {
f := new(foo)
fmt.Println(f) // &[0 0 0 0 0]
f[0] = 1
fmt.Println(f) // &[1 0 0 0 0]
f.Bar()
fmt.Println(f) // &[1 2 0 0 0]
// We can coerce custom types like we can with built-in types
b := foo([5]int{9, 9, 9})
fmt.Println(b) // [9 9 9 0 0]
// Check the types
fmt.Printf("%T\n", b) // main.foo
fmt.Printf("%T\n", [5]int{9, 9, 9}) // [5]int
}
func (f *foo) Bar() {
f[1] = 2
}
package main
import "fmt"
type Foo func(int, string)
func (f Foo) Bar(s string) {
fmt.Printf("s: %s\n", s)
}
func FooIt(x int, y string) {
fmt.Printf("x: %d - y: %s\n", x, y)
}
// We HAVE to define the incoming type of "fn"
// Which in this case is a Foo type
func TestIt(fn Foo) {
fn(99, "problems")
}
// We could do this without defining a func type
// But as you can see, this is a bit ugly
// Plus if we need this function passed around a lot
// then it means a lot of duplicated effort
// typing the signature over and over
func TestItManually(fn func(int, string)) {
fn(100, "problems")
}
func main() {
// Here we're just demonstrating passing around the FooIt function
// It demonstrates first-class function support in Go
// But also that we can ensure the function passed around has the expected signature
TestIt(FooIt)
TestItManually(FooIt)
x := Foo(FooIt) // Convert our function into a Foo type
x(0, "hai") // Now we can execute it as we would FooIt itself
FooIt(1, "bye")
// Notice the types are different
// FooIt is just a function with a signature (no known type associated with it)
// Where as "x" is of known type "Foo"
fmt.Printf("%T\n", FooIt) // func(int, string)
fmt.Printf("%T\n", x) // main.Foo
// But we'll see that the function "x"
// which was converted into a Foo type
// now has access to a Bar method
// Although FooIt has a matching signature, it's not a Foo type
// and so it doesn't have a Bar method available
x.Bar("we have a Bar method")
// We can't even execute:
// FooIt.Bar("we don't have a Bar method")
// Because the compiler will stop us
}
A variable of Struct type doesn't need to be instantiated like a type struct:
package main
import "fmt"
var data struct {
A string
B string
}
type data2 struct {
A string
B string
}
func main() {
data.A = "Hai"
data.B = "Bai"
fmt.Printf(
"%#v, %+v, %+v",
data.A,
data.B,
data2{A: "abc", B: "def"}
)
// "Hai", Bai, {A:abc B:def}
}
### Reference vs Value
Map data structures are passed by reference, rather than a copied value
package main
import "fmt"
func main() {
m := make(map[string]int)
fmt.Println("main before, m = ", m)
foo(m)
fmt.Println("main after, m = ", m)
}
func foo(m map[string]int) {
fmt.Println("foo before, m = ", m)
m["hai"] = 123
fmt.Println("foo after, m = ", m)
}
In fact, anything with make
is a reference, as well as any explicit interface
errType := reflect.TypeOf(err)
for i := 0; i < errType.NumMethod(); i++ {
method := errType.Method(i)
fmt.Println(method.Name)
}
now := time.Now()
fmt.Println(now)
expiration := now.Add(time.Hour * 24 * 30)
fmt.Println("Thirty days from now will be : ", expiration)
package main
import (
"encoding/json"
"fmt"
"os"
"time"
)
func main() {
type Message struct {
Sequence int `json:"sequence"`
Title string `json:"title"`
Timestamp time.Time `json:"timestamp"`
}
msg := Message{1, "Foobar", time.Now()}
b, err := json.Marshal(msg)
if err != nil {
fmt.Println("error:", err)
}
os.Stdout.Write(b)
}
Effectively the solution is:
/*
imagine our variable 'bytes' contains some JSON with lots of fields
we only want the fields 'type' and 'id'
we should get our provider of data to transform everything else inside a 'data' field
e.g.
{
“id”: “numero uno”,
“type”: “transaction”,
// data is the JSON msg from above
“data”: {
“id”: “numero uno”,
“type”: “transaction”,
// … a whole bunch of dynamic fields
“amount”: “1000”,
“currency”: “usd”,
// … etc.
}
}
*/
type Message struct {
ID string `json:”id”`
Type string `json:”type”`
Data json.RawMessage `json:”data”`
}
var m Message
json.Unmarshal(bytes, &m)
es.Index(index, m.Type, m.ID, "", "", nil, m.Data, false)
This way we only decode the id and type, so we're being performant, and then we pass the original raw JSON onto our next service (e.g. es
ElasticSearch) to do with what they please.
package main
import (
"encoding/json"
"fmt"
)
type Component struct {
Components []struct {
Id string `json:"id"`
Url string `json:"url"`
} `json:"components"`
}
func main() {
var c Component
b := []byte(`{"components":[{"id":"google","url":"http://google.com/"},{"id":"integralist","url":"http://integralist.co.uk/"},{"id":"sloooow","url":"http://stevesouders.com/cuzillion/?c0=hj1hfff5_0_f&c1=hc1hfff2_0_f&t=1439190969678"}]}`)
json.Unmarshal(b, &c)
fmt.Printf("%+v", c.Components[0]) // {Id:google Url:http://google.com/}
}
package main
import (
"encoding/json"
"fmt"
"os"
)
func main() {
type ColorGroup struct {
ID int
Name string
Colors []string
}
group := ColorGroup{
ID: 1,
Name: "Reds",
Colors: []string{"Crimson", "Red", "Ruby", "Maroon"},
}
b, err := json.MarshalIndent(group, "", " ")
if err != nil {
fmt.Println("error:", err)
}
os.Stdout.Write(b)
}
package main
import (
"fmt"
"gopkg.in/yaml.v2"
)
type ComponentYaml struct {
Id string `yaml:"id"`
Url string `yaml:"url"`
}
type ComponentsYamlList struct {
Components []ComponentYaml `yaml:"components"`
}
func main() {
var y ComponentsYamlList
yaml.Unmarshal([]byte("components:\n - id: google\n url: http://google.com\n - id: integralist\n url: http://integralist.co.uk"), &y)
fmt.Println(y)
}
package main
import (
"encoding/json"
"fmt"
"os"
"gopkg.in/yaml.v2"
)
var yml = []byte(`
- key: foo
value: bar
secret: false
- key: beep
value: boop
secret: true
`)
type Data struct {
Items []map[string]interface{}
}
func main() {
y := []map[string]interface{}{}
if err := yaml.Unmarshal(yml, &y); err == nil {
fmt.Printf("%#v\n", y)
} else {
fmt.Println(err.Error())
}
myYaml := Data{Items: y}
json.NewEncoder(os.Stdout).Encode(myYaml.Items)
}
package main
import (
"fmt"
"sort"
)
type vals []Value
type Value struct {
Key string
Value string
Secure bool
}
// Satisfy the Sort interface
func (v vals) Len() int { return len(v) }
func (v vals) Swap(i, j int) { v[i], v[j] = v[j], v[i] }
func (v vals) Less(i, j int) bool {
return v[i].Key < v[j].Key
}
func main() {
orig := vals{
{"CK", "BV", false},
{"DK", "AV", true},
{"AK", "CV", false},
{"BK", "DV", true},
}
fmt.Printf("%+v\n\n", orig)
sort.Sort(orig)
fmt.Printf("%+v\n\n", orig)
}
Here is a similar version that sorts by name and age:
package main
import (
"fmt"
"sort"
)
type person struct {
Name string
Age int
}
type byName []person
func (p byName) Len() int {
return len(p)
}
func (p byName) Less(i, j int) bool {
return p[i].Name < p[j].Name
}
func (p byName) Swap(i, j int) {
p[i], p[j] = p[j], p[i]
}
type byAge []person
func (p byAge) Len() int {
return len(p)
}
func (p byAge) Less(i, j int) bool {
return p[i].Age < p[j].Age
}
func (p byAge) Swap(i, j int) {
p[i], p[j] = p[j], p[i]
}
func main() {
kids := []person{
{"Jill", 9},
{"Jack", 10},
}
sort.Sort(byName(kids))
fmt.Println(kids)
sort.Sort(byAge(kids))
fmt.Println(kids)
}
Which results in:
[{Jack 10} {Jill 9}]
[{Jill 9} {Jack 10}]
reader := bufio.NewReader(os.Stdin)
fmt.Print("Enter text: ")
text, _ := reader.ReadString('\n')
fmt.Println(text)
The Go web server design relies on a struct to map routes (URLs) to functions.
You can define your own struct (prefilled for example) and pass it into ListenAndServe
. But typically nil
is used, which means an empty struct is used by default.
At this point most people will use either HandleFunc
or Handle
to register their specified request path so it maps to a specific handler function (this is added to the default struct called DefaultServeMux
):
package main
import (
"fmt"
"net/http"
)
func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "Hi there, I love %s!", r.URL.Path[1:])
}
func main() {
http.HandleFunc("/", handler)
http.ListenAndServe(":8080", nil)
}
There is a difference between HandleFunc
and Handle
. The latter takes a type that has a ServeHTTP
method associated to it (we'll see an example in a moment of what this looks like). The former is an abstraction layer that allows an incompatible function (one that doesn't have a ServeHTTP
method) to be used as a handler.
The way HandleFunc
works is that it wraps the provided function in a call to HandlerFunc
(see below for example). In this example HandlerFunc
is a type of func
, and this type defines the expected function signature and return value(s).
What it states is that a compatible function should have the following signature: ResponseWriter, *Request
, and it also attaches the method ServeHTTP
to the type HandlerFunc
.
Now we can understand that when HandleFunc
is called and passed our arbitrary function, we call the HandlerFunc
func type and pass it our function, subsequently converting the incoming function so it is now of the type HandlerFunc
and will now have gained a ServeHTTP
function which allows it to satisfy the Handle
interface.
Finally, our HandleFunc
- once finished adpating the incoming user function - will internally call the Handle
function and pass it the adapted function, which now satisfies the interface required by Handle
.
The actual implementation looks like the following (I've cobbled together all the separate pieces, it doesn't necessarily appear like this in the source code):
// We define an interface that states
// if the object has a ServeHTTP method
// then it satisfies this interface
type Handler interface {
ServeHTTP(ResponseWriter, *Request)
}
// The func type works a bit like an interface
// So if your own user-defined function has a matching signature
// then your function is considered a `HandlerFunc` and will acquire a `ServeHTTP` method
// See directly below for where ServeHTTP is attached to this func type
type HandlerFunc func(ResponseWriter, *Request)
// Once the provided function is converted to the HandlerFunc type
// it'll mean it has the `ServeHTTP` function available
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
f(w, r)
}
// This is the abstraction function our client code calls...
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
// Here is where we "adapt" the incoming function so it is given a ServeHTTP method
// We do this by passing it to the HandlerFunc func type
mux.Handle(pattern, HandlerFunc(handler))
}
// Finally, this is the function that's passed our "adapted/converted" handler function
// The 'handler' passed in now fulfills the 'Handler' interface that says it needs a 'ServeHTTP' method
func (mux *ServeMux) Handle(pattern string, handler Handler) {
...do all the things...
}
This allows the arbitrary function to be used for handling the requested URL.
Below is an example for using handle
instead of handleFunc
:
package main
import (
"fmt"
"net/http"
)
type String string
func (s String) ServeHTTP(
w http.ResponseWriter,
r *http.Request) {
fmt.Fprint(w, s)
}
type Struct struct {
Greeting string
Punct string
Who string
}
func (s Struct) ServeHTTP(
w http.ResponseWriter,
r *http.Request) {
fmt.Fprint(w, s.Greeting, s.Punct, s.Who)
}
func main() {
http.Handle("/string", String("I'm a frayed knot."))
http.Handle("/struct", &Struct{"Hello", ":", "Gophers!"})
http.ListenAndServe("localhost:4000", nil)
}
Now visit http://localhost:4000/string
and http://localhost:4000/struct
to see the appropriate output
This code was modified from https://medium.com/@matryer/writing-middleware-in-golang-and-how-go-makes-it-so-much-fun-4375c1246e81
package main
import (
"fmt"
"log"
"net/http"
"os"
)
type data struct {
Greeting string
Punct string
Who string
}
func (s data) ServeHTTP(w http.ResponseWriter, r *http.Request) {
fmt.Fprint(w, s.Greeting, s.Punct, s.Who)
}
type adapter func(http.Handler) http.Handler
func adapt(h http.Handler, adapters ...adapter) http.Handler {
// Ideally you'd do this in reverse
// to ensure the order of the middleware
// matches their specified order
for _, adapter := range adapters {
h = adapter(h)
}
return h
}
func notify(logger *log.Logger) adapter {
return func(h http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
logger.Println("before")
defer logger.Println("after")
h.ServeHTTP(w, r)
})
}
}
func doSomething() adapter {
return func(h http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
fmt.Println("before")
defer fmt.Println("after")
h.ServeHTTP(w, r)
})
}
}
func main() {
http.Handle("/hello", &data{"Hello", " ", "Gophers!"})
logger := log.New(os.Stdout, "server: ", log.Lshortfile)
http.Handle("/hello-with-middleware", adapt(
&data{"Hello", " ", "Gophers!"},
notify(logger), // runs second
doSomething(), // runs first
))
http.ListenAndServe("localhost:4000", nil)
}
This code will run a web server with two valid endpoints:
/hello
/hello-with-middleware
The client sees the same output but the latter endpoint produces the following stdout output:
before
server: middleware.go:35: before
server: middleware.go:38: after
after
package main
import (
"fmt"
"net/http"
"time"
)
const cookiePrefix = "integralist-example-cookie-"
func main() {
http.HandleFunc("/", login)
http.HandleFunc("/admin", admin)
http.HandleFunc("/logout", logout)
http.ListenAndServe("localhost:4000", nil)
}
func login(w http.ResponseWriter, r *http.Request) {
if r.Method == "GET" {
fmt.Fprintf(w, `
<html>
<body>
<form method="POST">
Username: <input type="text" name="username">
<br />
Password: <input type="password" name="password">
<br />
<input type="submit" value="Login">
</body>
</html>
`)
}
if r.Method == "POST" {
username := r.FormValue("username")
password := r.FormValue("password")
if username == "admin" && password == "password" {
http.SetCookie(w, &http.Cookie{
Name: cookiePrefix + "user",
Value: username,
})
http.Redirect(w, r, "/admin", 302)
} else {
fmt.Fprintf(w, `
<html>
<body>
Login details were incorrect. Sorry, <a href="/">try again</a>
</body>
</html>
`)
}
}
}
func logout(w http.ResponseWriter, r *http.Request) {
http.SetCookie(w, &http.Cookie{
Name: cookiePrefix + "user",
Value: "",
Expires: time.Now(),
})
http.Redirect(w, r, "/", 302)
}
func admin(w http.ResponseWriter, r *http.Request) {
cookie, err := r.Cookie(cookiePrefix + "user")
if err != nil {
http.Redirect(w, r, "/", 401) // Unauthorized
return
}
fmt.Fprintf(w, `
<html>
<body>
Logged into admin area as: %s<br><br>
<a href="/logout">Logout</a>
</body>
</html>
`, cookie.Value)
}
// Wait for 1.5 release to be able to verify timeout error (bug in language)
// Use -race flag https://blog.golang.org/race-detector to detect race conditions
package main
import (
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
"sync"
"time"
"gopkg.in/yaml.v2"
)
type ComponentYaml struct {
Id string `yaml:"id"`
Url string `yaml:"url"`
}
type Component struct {
Id string `json:"id"`
Url string `json:"url"`
}
type ComponentsYamlList struct {
Components []ComponentYaml `yaml:"components"`
}
type ComponentsList struct {
Components []Component `json:"components"`
}
type ComponentResponse struct {
Id string
Status int
Body string
}
type Result struct {
Status string
Components []ComponentResponse
}
var overallStatus string = "success"
func getComponents() []byte {
return []byte(`{"components":[{"id":"local","url":"http://localhost:8080/pugs"},{"id":"google","url":"http://google.com/"},{"id":"integralist","url":"http://integralist.co.uk/"},{"id":"sloooow","url":"http://stevesouders.com/cuzillion/?c0=hj1hfff30_5_f&t=1439194716962"}]}`)
}
func getComponent(wg *sync.WaitGroup, client *http.Client, i int, v Component, ch chan ComponentResponse) {
defer wg.Done()
resp, err := client.Get(v.Url)
if err != nil {
fmt.Printf("Problem getting the response: %s\n\n", err)
ch <- ComponentResponse{
v.Id, 500, err.Error(),
}
} else {
defer resp.Body.Close()
contents, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Printf("Problem reading the body for %s -> %s\n", v.Id, err)
}
ch <- ComponentResponse{
v.Id, resp.StatusCode, string(contents),
}
}
}
func main() {
var cr []ComponentResponse
var c ComponentsList
var y ComponentsYamlList
ch := make(chan ComponentResponse)
b := getComponents() // to be read from a file
yaml.Unmarshal([]byte("components:\n - id: google\n url: http://google.com\n - id: integralist\n url: http://integralist.co.uk"), &y)
json.Unmarshal(b, &c)
timeout := time.Duration(1 * time.Second)
client := http.Client{
Timeout: timeout,
}
var wg sync.WaitGroup
for i, v := range c.Components {
wg.Add(1)
go getComponent(&wg, &client, i, v, ch)
cr = append(cr, <-ch)
}
wg.Wait()
j, err := json.Marshal(Result{overallStatus, cr})
if err != nil {
fmt.Printf("Problem converting to JSON: %s\n", err)
return
}
fmt.Println(string(j))
fmt.Println(y)
}
import (
"fmt"
"io/ioutil"
"net/http"
"github.com/BBC-News/mozart-config-api/src/logger"
"github.com/aws/aws-sdk-go/aws"
"github.com/aws/aws-sdk-go/aws/awserr"
"github.com/aws/aws-sdk-go/service/s3"
)
func HandleStatusRequest(w http.ResponseWriter, r *http.Request) {
fmt.Fprint(w, "ok")
}
func HandleGetRequest(w http.ResponseWriter, r *http.Request) {
svc := s3.New(&aws.Config{
Region: aws.String("eu-west-1"),
Endpoint: aws.String("s3.spurious.localhost:32769"),
DisableSSL: aws.Bool(true),
S3ForcePathStyle: aws.Bool(true),
})
params := &s3.GetObjectInput{
Bucket: aws.String("int-mozart-config-api"),
Key: aws.String("/v1/int/news/foo.json"),
}
resp, err := svc.GetObject(params)
// ABSTRACT INTO A FUNCTION IN A NAMESPACE!
if err != nil {
if awsErr, ok := err.(awserr.Error); ok {
// Generic AWS Error with Code, Message, and original error (if any)
fmt.Println("1. ", awsErr.Code(), awsErr.Message(), awsErr.OrigErr())
if reqErr, ok := err.(awserr.RequestFailure); ok {
// A service error occurred
fmt.Println("2. ", reqErr.StatusCode(), reqErr.RequestID())
}
} else {
fmt.Println("3. ", err.Error())
}
}
data, err := ioutil.ReadAll(resp.Body)
if err != nil {
fmt.Println("Error reading content", err)
}
fmt.Println(data) // => []byte
fmt.Println(string(data[:]))
w.Header().Set("Content-Type", "application/json")
w.Write(data)
logger.Metric("200 response")
}
var (
Version string
BuildTime string
)
Now build the project using:
go build -ldflags "-X github.com/<user>/<project>/core.Version=1.0.0 -X github.com/<user>/<project>/core.BuildTime=2015-10-03T11:08:49+0200" main.go
package requester
import (
"crypto/tls"
"crypto/x509"
"flag"
"io/ioutil"
"log"
"net/http"
)
var (
certFile = flag.String("cert", "/etc/pki/tls/certs/client.crt", "A PEM eoncoded certificate file.")
keyFile = flag.String("key", "/etc/pki/tls/private/client.key", "A PEM encoded private key file.")
caFile = flag.String("CA", "/etc/ca/cloud-ca.pem", "A PEM eoncoded CA's certificate file.")
)
func SecureClient() *http.Client {
// Load client cert
cert, err := tls.LoadX509KeyPair(*certFile, *keyFile)
if err != nil {
log.Fatal(err)
}
// Load CA cert
caCert, err := ioutil.ReadFile(*caFile)
if err != nil {
log.Fatal(err)
}
caCertPool := x509.NewCertPool()
caCertPool.AppendCertsFromPEM(caCert)
// Setup HTTPS client
tlsConfig := &tls.Config{
Certificates: []tls.Certificate{cert},
RootCAs: caCertPool,
InsecureSkipVerify: true,
}
tlsConfig.BuildNameToCertificate()
transport := &http.Transport{TLSClientConfig: tlsConfig}
client := &http.Client{Transport: transport}
return client
}
And to use it...
client := requester.SecureClient()
// GET
resp, err := client.Get(someEndpoint)
// POST
req, err := http.NewRequest("POST", someEndpoint, bytes.NewBuffer(jsonStr))
req.Header.Set("Content-Type", "application/json")
resp, err := client.Do(req)
Go doesn't provide abstractions for all the various HTTP request types, so for things like PUT
you have to implement it yourself. The following is an example that creates a secure (TLS/HTTPS) PUT
abstraction...
func SecurePut(url, contentType string, configFile io.Reader) (*http.Response, error) {
client := &http.Client{Transport: configureTLS()}
req, err := http.NewRequest("PUT", url, configFile)
if err != nil {
return nil, err
}
req.Header.Add("Content-Type", contentType)
resp, err := client.Do(req)
return resp, err
}
func configureTLS() *http.Transport {
certFilePath := "path/to/cert"
keyFilePath := "path/to/privateKey"
caPath := "path/to/ca"
// Load client cert
cert, err := tls.LoadX509KeyPair(certFilePath, keyFilePath)
if err != nil {
msg := fmt.Sprintf("Error loading developer cert, path: \"%s\"", certFilePath)
output.Error(msg)
}
// Load CA cert
caCert, err := ioutil.ReadFile(caPath)
if err != nil {
msg := fmt.Sprintf("Error loading CA cert, path: \"%s\"", caPath)
output.Error(msg)
}
caCertPool := x509.NewCertPool()
caCertPool.AppendCertsFromPEM(caCert)
// Setup HTTPS client
tlsConfig := &tls.Config{
Certificates: []tls.Certificate{cert},
RootCAs: caCertPool,
InsecureSkipVerify: true,
}
tlsConfig.BuildNameToCertificate()
return &http.Transport{TLSClientConfig: tlsConfig}
}
package main
import (
"fmt"
"io/ioutil"
"net/http"
"os"
)
func main() {
response, err := http.Get("http://www.integralist.co.uk/")
if err != nil {
fmt.Println(err.Error())
os.Exit(1)
}
defer response.Body.Close()
contents, err := ioutil.ReadAll(response.Body)
if err != nil {
fmt.Println(err.Error())
os.Exit(1)
}
fmt.Println(string(contents))
}
package main
import "fmt"
// Point stores co-ordinates
type Point struct {
x int
y int
}
// If receiver (Point) isn't set to a pointer (*Point)
// then the struct's field value won't be updated outside the method
func (p *Point) scaleBy(factor int) {
fmt.Printf("scaleBy (before modification): %+v\n", p)
// Don't need to derefence (*) struct fields
// Compiler will perform an implicit &p for you
// You only need to dereference in standard functions when a argument pointer is required (see below Array Pointer example)
p.x *= factor
p.y *= factor
fmt.Printf("scaleBy (after modification): %+v\n", p)
}
func main() {
// Doesn't matter if we do or don't get the address space (&) for foo/bar's Point
foo := &Point{1, 2}
bar := &Point{6, 8}
fmt.Printf("Main foo.x: %+v\n", foo.x)
fmt.Printf("Main bar.x: %+v\n", bar.x)
foo.scaleBy(5)
bar.scaleBy(5)
fmt.Printf("Main foo.x: %+v\n", foo.x)
fmt.Printf("Main foo.y: %+v\n", foo.y)
fmt.Printf("Main bar.x: %+v\n", bar.x)
fmt.Printf("Main bar.y: %+v\n", bar.y)
}
Note: compiler can only apply implicit dereference for variables and struct fields
this wouldn't workPoint{1, 2}.scaleBy(5)
Results in the following output:
Main foo.x: 1
Main bar.x: 6
scaleBy (before modification): &{x:1 y:2}
scaleBy (after modification): &{x:5 y:10}
scaleBy (before modification): &{x:6 y:8}
scaleBy (after modification): &{x:30 y:40}
Main foo.x: 5
Main foo.y: 10
Main bar.x: 30
Main bar.y: 40
Deference an Array pointer so you can mutate the original Array values:
package main
import "fmt"
func main() {
x := [3]int{1,2,3}
func(arr *[3]int) {
(*arr)[0] = 7
fmt.Println(arr) //prints &[7 2 3]
}(&x)
fmt.Println(x) //prints [7 2 3]
}
Alternatively you can utilise a Slice instead of an Array, as the slice 'header' already has a 'pointer' to an underlying Array:
package main
import "fmt"
func main() {
x := []int{1,2,3}
func(arr []int) {
arr[0] = 7
fmt.Println(arr) //prints [7 2 3]
}(x)
fmt.Println(x) //prints [7 2 3]
}
if e, ok := err.(net.Error); ok && e.Timeout() {
//
}
type argError struct {
arg int
prob string
}
func (e *argError) Error() string {
return fmt.Sprintf("%d - %s", e.arg, e.prob)
}
if ae, ok := e.(*argError); ok {
//
}
Demonstrates how to use bufio
package to scan a file and read it line by line, and then how to increment a map integer value using the shortcut map[key]++
. Finally, demonstrates nested maps and ranging over them:
package main
import (
"bufio"
"fmt"
"os"
)
func main() {
counts := make(map[string]map[string]int)
files := os.Args[1:]
if len(files) == 0 {
countLines(os.Stdin, "n/a", counts)
} else {
for _, arg := range files {
f, err := os.Open(arg)
if err != nil {
fmt.Fprintf(os.Stderr, "dup2: %v\n", err)
continue
}
countLines(f, arg, counts)
f.Close()
}
}
for key, nestedMap := range counts {
fmt.Printf("Text: %s\n", key)
for filename, count := range nestedMap {
fmt.Printf("\tFile: %s\n\tCount: %d\n", filename, count)
}
fmt.Println("")
}
}
func countLines(f *os.File, filename string, counts map[string]map[string]int) {
input := bufio.NewScanner(f)
for input.Scan() {
if val, ok := counts[input.Text()]; ok {
val[filename]++
} else {
inner := make(map[string]int)
inner[filename]++
counts[input.Text()] = inner
}
}
}
package main
import (
"fmt"
"time"
)
// Sleep requires a Duration
// time has set of constants we can use (lowest is 1 Duration)
// Second constant is an abstraction over the other constants
func main() {
start := time.Now()
time.Sleep(time.Duration(5) * time.Second) // sleep 5 seconds
secs := time.Since(start).Seconds()
fmt.Printf("Time spent: %f seconds", secs)
}
package main
import (
"fmt"
"log"
"os"
)
func main() {
// Create file (truncates file if it already exists)
file, err := os.Create("created.txt")
if err != nil {
log.Fatal(err)
}
// Populate byte slice with some content
b := make([]byte, 0)
for i := 0; i < 5; i++ {
b = append(b, '!')
b = append(b, '\n')
// notice single quotes for Rune rather than double quote for String
}
for i := 0; i < 5; i++ {
b = append(b, '?')
b = append(b, '\n')
// notice single quotes for Rune rather than double quote for String
}
for i := 0; i < 5; i++ {
b = append(b, '%')
b = append(b, '\n')
// notice single quotes for Rune rather than double quote for String
}
// Write file contents
bytesWritten, err := file.Write(b)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Bytes written: %+v\n", bytesWritten)
// Although getting the bytes written was useful for us
// in this example, you might need to get total bytes
// which can be done by copying file contents into dev/null
// io.Copy(ioutil.Discard, resp.Body)
// Get current offset
// 1st arg is how much to seek forward/backwards by
// 2nd arg is relative to different settings
// 0 == relative to start of file
// 1 == current offset
// 2 == relative to end of file
currentOffset, err := file.Seek(0, 1)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Current offset: %d\n", currentOffset)
file.Seek(-currentOffset, 1) // Return to start of file for next Read
// Read buffered view of file
data := make([]byte, 10, bytesWritten) // create slice with underlying Array capacity set to total file bytes size
eof := false
for !eof {
count, err := file.Read(data)
if err != nil {
eof = true
}
fmt.Printf("read %d bytes: %q\n", count, data[:count])
}
}
Basic example that pauses execution until the timer has expired (you would use this over a timer.Sleep
because you can cancel a timer before it has expired;):
package main
import (
"fmt"
"time"
)
func main() {
timer := time.NewTimer(time.Second * 2)
<-timer.C // pauses for two seconds
fmt.Println("Timer expired")
}
Example of cancelling the timer:
package main
import (
"fmt"
"time"
)
func main() {
timer := time.NewTimer(time.Second * 2)
// Expensive process run in a separate thread
go func() {
<-timer.C
fmt.Println("Timer expired")
}()
stop := timer.Stop() // cancel the timer
fmt.Println(stop) // true
}
We can do a similar thing with Timers:
package main
import (
"fmt"
"time"
)
func main() {
ticker := time.NewTicker(time.Millisecond * 500)
// Repetitive process
go func() {
// Range over the channel rather than pull from it
for t := range ticker.C {
fmt.Println("Tick:", t)
}
}()
// Stop ticker after three ticks/intervals
time.Sleep(time.Millisecond * 1500)
ticker.Stop()
}
We can combine all these items together with a select
statement like so:
package main
import "time"
import "fmt"
func main() {
timeChan := time.NewTimer(time.Second).C
tickChan := time.NewTicker(time.Millisecond * 400).C
// Used to signify we're done with this program
doneChan := make(chan bool)
// Sleep for two seconds, then notify the channel we're done
go func() {
time.Sleep(time.Second * 2)
doneChan <- true
}()
for {
select {
case <-timeChan:
fmt.Println("Timer expired")
case <-tickChan:
fmt.Println("Ticker ticked")
case <-doneChan:
fmt.Println("Done")
return
}
}
}
The output of this program would be something like:
Ticker ticked
Ticker ticked
Timer expired
Ticker ticked
Ticker ticked
Done
I would imagine that for most cases you'll want to use a time.NewTimer
as seen in previous examples if you want to stop a goroutine that's processing a long running program. The following example is more for stopping a goroutine that's running code at a set interval (although using time.NewTicker
would probably be more appropriate):
package main
import (
"fmt"
"time"
)
func main() {
quit := make(chan bool)
// Run a piece of code at a set interval
go func() {
for {
select {
case <-quit:
return
default:
fmt.Println("Not ready to stop this goroutine")
time.Sleep(time.Millisecond * 100)
}
}
}()
// Do other stuff for two seconds
time.Sleep(time.Second * 2)
// Quit goroutine
quit <- true
fmt.Println("Goroutine was stopped")
}
Starting a goroutine:
package main
import (
"fmt"
"time"
)
func main() {
// Use a struct type channel as it clarifies your intent
// Which is this channel is used for 'signalling'
start := make(chan struct{})
for i := 0; i < 10000; i++ {
go func() {
<-start // wait for the start channel to be closed
fmt.Println("do stuff")
}()
}
// at this point, all goroutines are ready to go
// we just need to tell them to start by
// closing the start channel
close(start)
fmt.Println("Let's pause briefly to give goroutines time to execute")
time.Sleep(time.Millisecond * 10)
}
Stopping a goroutine:
package main
import (
"fmt"
"time"
)
func main() {
// Use a struct type channel as it clarifies your intent
// Which is this channel is used for 'signalling'
done := make(chan struct{})
// Long running process put onto a thread
go func() {
fmt.Println("Inside thread doing expensive processing")
time.Sleep(time.Second * 5)
close(done)
}()
fmt.Println("Do other things")
// Wait for long running process to finish
<-done
fmt.Println("Do more things")
}
The principle of a pipeline, is to take data from one function and pass it into another function, that receiving function will process the received data and then that result is returned and subsequently passed onto another function... rinse and repeat for however long your pipeline needs to be.
In the below example (copied from here) demonstrates how a set of functions accept a channel and return a channel and so channels is the 'data' that is passed around the pipeline functions:
package main
import "fmt"
import "sync"
func ingest() <-chan []string {
out := make(chan []string)
go func() {
out <- []string{"aaaa", "bbb"}
out <- []string{"cccccc", "dddddd"}
out <- []string{"e", "fffff", "g"}
close(out)
}()
return out
}
func process(concurrency int, in <-chan []string) <-chan int {
var wg sync.WaitGroup
wg.Add(concurrency)
out := make(chan int)
work := func() {
for data := range in {
for _, word := range data {
out <- len(word)
}
}
wg.Done()
}
go func() {
for i := 0; i < concurrency; i++ {
go work()
}
}()
go func() {
wg.Wait()
close(out)
}()
return out
}
func store(in <-chan int) <-chan struct{} {
done := make(chan struct{})
go func() {
defer close(done)
for data := range in {
fmt.Println(data)
}
}()
return done
}
func main() {
// stage 1 ingest data from source
in := ingest()
// stage 2 - process data
reduced := process(4, in)
// stage 3 - store
<-store(reduced)
}
Here is a basic program that uses a Struct for its data source:
package main
import (
"log"
"os"
"text/template"
)
type dataSource struct {
Baz int
}
func (ds dataSource) Foo() string {
return "I am foo"
}
func (ds dataSource) Bar() string {
return "I am bar"
}
const templ = `
Foo: {{.Foo}}
Piping: {{.Bar | printf "Bar: %s"}}
Function: {{.Baz | qux}}
`
func qux(baz int) int {
return baz * 2
}
// template.Must handles parsing errors better
var setupTemplate = template.Must(
template.New("whatever").
Funcs(template.FuncMap{"qux": qux}).
Parse(templ),
)
func main() {
ds := dataSource{5}
if err := setupTemplate.Execute(os.Stdout, ds); err != nil {
log.Fatal(err)
}
}
Note:
printf
is a built-in function for templating and is functionally equivalent tofmt.Sprintf
Program output:
Foo: I am foo
Piping: Bar: I am bar
Function: 10
Here is a HTML templating version:
package main
import (
"html/template"
"log"
"os"
)
var data struct {
A string // untrusted plain text
B template.HTML // trusted HTML
}
const templ = `<p>A: {{.A}}</p><p>B: {{.B}}</p>`
func main() {
t := template.Must(template.New("escape").Parse(templ))
data.A = "<b>Hello</b>"
data.B = "<b>Hello</b>"
if err := t.Execute(os.Stdout, data); err != nil {
log.Fatal(err)
}
}
The output would be:
<p>A: <b>Hello</b></p>
<p>B: <b>Hello</b></p>
The following code outputs:
This is our custom error with some more context prefixed: oh noes!
package main
import (
"errors"
"fmt"
)
type errWithContext struct {
err error
msg string
}
func (e errWithContext) Error() string {
return e.msg + ": " + e.err.Error()
}
func triggerError() (bool, error) {
return false, errors.New("oh noes!")
}
func main() {
var e *errWithContext
_, err := triggerError()
if err != nil {
e = &errWithContext{
err,
"This is our custom error with some more context prefixed",
}
}
fmt.Print(e.Error())
}
There are two main types of sockets:
- STREAM sockets (e.g. TCP)
- DATAGRAM sockets (e.g. UDP)
Note: a "unix domain socket" is actually a physical file
it's useful for local (same host) data communication
The principle steps behind a socket is:
- Create the socket
- Bind the socket to an address (e.g.
127.0.0.1:80
) - Listen for socket connections
- Accept the socket connection
There are two main packages in our below example: server.go
and client.go
.
Run both of them in separate terminals (e.g. go run ...
)
Then for the client.go
type your message followed by a new line, for example:
Hello World
Message from server: HELLO WORLD
Whilst in the server.go
terminal you should see:
Starting TCP server...
Message Received: Hello World
The code for this program is as follows:
server.go
package main
import (
"bufio"
"fmt"
"net"
"strings"
)
func main() {
fmt.Println("Starting TCP server...")
// Listen on all network interfaces (e.g. 0.0.0.0)
// Documentation: godoc net Listener | less
listener, _ := net.Listen("tcp", ":8081")
// Accept connection on the port we specified (see above)
connection, _ := listener.Accept()
// Handle incoming connections forever
for {
// Listen for message to process ending in newline (\n)
// Note: single quotes needed for type byte (double quotes is a string)
message, _ := bufio.NewReader(connection).ReadString('\n')
// Output message received
fmt.Println("Message Received:", string(message))
// Do something with the message (e.g. uppercase it)
newmessage := strings.ToUpper(message)
// Send new string back to client
connection.Write([]byte(newmessage + "\n"))
}
}
client.go
package main
import (
"bufio"
"fmt"
"net"
"os"
)
func main() {
// Open socket connection to a locally runnning TCP server
connection, _ := net.Dial("tcp", "127.0.0.1:8081")
// Handle incoming responses
for {
// Read the input
reader := bufio.NewReader(os.Stdin)
// Message to be sent
// Note: single quotes needed for type byte (double quotes is a string)
// Documentation: godoc bufio ReadString | less
// ReadString reads until the first occurrence of the delimiter \n in the input
text, _ := reader.ReadString('\n')
// Send message to open Socket
fmt.Fprintf(connection, text+"\n")
// Listen for response
// Note: single quotes needed for type byte (double quotes is a string)
message, _ := bufio.NewReader(connection).ReadString('\n')
fmt.Println("Message from server: " + message)
}
}
This code demonstrates how to be careful about false positives!
package main
import "fmt"
func equal(x, y map[string]int) bool {
if len(x) != len(y) {
// fail fast
return false
}
for k, xv := range x {
// Verify "missing" key and "present but zero" key value
if yv, ok := y[k]; !ok || yv != xv {
return false
}
/*
// The following condition would incorrectly return "true" for the below example comparison!
// This is because the empty value for an int type is a zero, while the actual value of x's key is zero
if xv != y[k] {
return false
}
*/
}
return true
}
func main() {
fmt.Println(
equal(map[string]int{"A": 0}, map[string]int{"B": 42}),
)
}
The first example demonstrates a 'named' field utilising an embedded Struct:
package main
import "fmt"
type Point struct {
X, Y int
}
type Circle struct {
Center Point // named embeded field
Radius int
}
type Wheel struct {
Circle Circle // named embeded field
Spokes int
}
func main() {
var w Wheel
w.Circle.Center.X = 8
w.Circle.Center.Y = 8
w.Circle.Radius = 5
w.Spokes = 20
fmt.Printf("%+v", w)
}
Which prints:
{Circle:{Center:{X:8 Y:8} Radius:5} Spokes:20}
The second example demonstrates an 'anonymous' field instead:
package main
import "fmt"
type Point struct {
X, Y int
}
type Circle struct {
Point
Radius int
}
type Wheel struct {
Circle
Spokes int
}
func main() {
var w Wheel
w.X = 8 // w.Circle.Point.X
w.Y = 8 // w.Circle.Point.Y
w.Radius = 5 // w.Circle.Radius
w.Spokes = 20
fmt.Printf("%+v", w)
}
Which prints:
{Circle:{Point:{X:8 Y:8} Radius:5} Spokes:20}
Note: anonymous fields don't work shorthand literal Struct
The following example demonstrates how methods of a composited object can be accessed from the consuming object:
package main
import "fmt"
type Point struct {
X, Y int
}
func (p Point) foo() {
fmt.Printf("foo: %+v\n", p)
}
type Circle struct {
Point
Radius int
}
type Wheel struct {
Circle
Spokes int
}
func main() {
var w Wheel
w.X = 8 // w.Circle.Point.X
w.Y = 8 // w.Circle.Point.Y
w.foo() // w.Circle.Point.foo()
w.Radius = 5 // w.Circle.Radius
w.Spokes = 20
fmt.Printf("%+v", w)
}
Which prints:
foo: {X:8 Y:8}
{Circle:{Point:{X:8 Y:8} Radius:5} Spokes:20}
Here is a more practical example that demonstrates how embedded functionality can make code more expressive:
package main
import (
"fmt"
"sync"
)
// Anonymous struct
var cache = struct {
sync.Mutex
mapping map[string]string
}{
mapping: make(map[string]string), // initial zero value for map
}
func setValue() {
cache.Lock()
cache.mapping["foo"] = "bar"
cache.Unlock()
}
func main() {
setValue()
cache.Lock()
v := cache.mapping["foo"]
cache.Unlock()
fmt.Printf("v: %s", v)
}
package main
import (
"compress/zlib"
"io"
"log"
"os"
)
func main() {
var err error
// This defends against an error preventing `defer` from being called
// As log.Fatal otherwise calls `os.Exit`
defer func() {
if err != nil {
log.Fatalln("\nDeferred log: \n", err)
}
}()
src, err := os.Create("source.txt")
if err != nil {
return
}
src.WriteString("source content")
src.Close()
dest, err := os.Create("new.txt")
if err != nil {
return
}
openSrc, err := os.Open("source.txt")
if err != nil {
return
}
zdest := zlib.NewWriter(dest)
if _, err := io.Copy(zdest, openSrc); err != nil {
return
}
// Close these explicitly
zdest.Close()
dest.Close()
n, err := os.Open("new.txt")
if err != nil {
return
}
r, err := zlib.NewReader(n)
if err != nil {
return
}
defer r.Close()
io.Copy(os.Stdout, r)
err = os.Remove("source.txt")
if err != nil {
return
}
err = os.Remove("new.txt")
if err != nil {
return
}
}
For details of what RPC means, see: https://gist.github.com/Integralist/f5856b94e002bcfd4ce7
Only methods that satisfy these criteria will be made available for remote access; other methods will be ignored:
- the method's type is exported.
- the method is exported.
- the method has two arguments, both exported (or builtin) types.
- the method's second argument is a pointer.
- the method has return type error.
In effect, the method must look schematically like
func (t *T) MethodName(argType T1, replyType *T2) error
The setup for a simple RPC example is:
- Create remote package Foo that will consist of functions to be made available via RPC
- Create remote package that will expose package Foo
- Create client package that connects to remote via RPC
There are two variations:
- RPC over HTTP
- RPC over TCP
So here is the package that consists of functions to be made available via RPC:
package remote
import "fmt"
// Args is a data structure for the incoming arguments
type Args struct {
A, B int
}
// Arith is our functions return type
type Arith int
// Multiply does simply multiplication on provided arguments
func (t *Arith) Multiply(args *Args, reply *int) error {
fmt.Printf("Args received: %+v\n", args)
*reply = args.A * args.B
return nil
}
Here is the remote package that exposes the other package of functionality:
package main
import (
"log"
"net"
"net/rpc"
"github.com/integralist/rpc/remote"
)
func main() {
arith := new(remote.Arith)
rpc.Register(arith)
rpc.HandleHTTP()
l, e := net.Listen("tcp", ":1234")
if e != nil {
log.Fatal("listen error:", e)
}
rpc.Accept(l)
}
Here is our client code for connecting to our remote package via RPC:
package main
import (
"fmt"
"log"
"net"
"net/rpc"
"time"
)
type args struct {
A, B int
}
func main() {
conn, err := net.DialTimeout("tcp", "localhost:1234", time.Minute)
if err != nil {
log.Fatal("dialing:", err)
}
client := rpc.NewClient(conn)
var reply int
e := client.Call("Arith.Multiply", &args{4, 2}, &reply)
if e != nil {
log.Fatalf("Something went wrong: %s", err.Error())
}
fmt.Printf("The reply pointer value has been changed to: %d", reply)
}
Remote RPC Function:
package remote
import "fmt"
// Compose is our RPC functions return type
type Compose string
// Details is our exposed RPC function
func (c *Compose) Details(arg string, reply *string) error {
fmt.Printf("Arg received: %+v\n", arg)
*c = "some value"
*reply = "Blah!"
return nil
}
Remote RPC Endpoint Exposed:
package remote
import (
"fmt"
"net"
"net/rpc"
"github.com/bbc/mozart-api-common/logger"
)
// Endpoint exposes our RPC over TCP service
func Endpoint() {
compose := new(Compose)
rpc.Register(compose)
// rpc.HandleHTTP()
listener, err := net.Listen("tcp", ":8080")
if err != nil {
logMessage := map[string]interface{}{
"event": "FailedTCPListenerConnection",
"message": fmt.Sprintf("Listener failed to open TCP port 8080: %v", err),
}
logger.Error(logMessage)
}
// rpc.Accept(listener)
for {
conn, err := listener.Accept()
if err != nil {
logMessage := map[string]interface{}{
"event": "FailedTPCIncomingConnection",
"message": fmt.Sprintf("Listener failed to accept an incoming connection: %v", err),
}
logger.Error(logMessage)
}
go rpc.ServeConn(conn)
}
}
Client Connection over TCP to Remote RPC function:
package main
import (
"fmt"
"log"
"net/rpc"
)
func main() {
client, err := rpc.Dial("tcp", "localhost:8080")
if err != nil {
log.Fatal("dialing:", err)
}
var reply string
e := client.Call("Compose.Details", "my string", &reply)
if e != nil {
log.Fatalf("Something went wrong: %v", e.Error())
}
fmt.Printf("The 'reply' pointer value has been changed to: %s", reply)
}
There is another option (which is required if using another programming language to communicate with your Go RPC service), that is to turn your RPC into a JSON RPC.
This is because the standard net/rpc uses https://golang.org/pkg/encoding/gob/
Which is a Go specific streaming binary format
Effectively just use the same example as above but make the following changes:
net/rpc
tonet/rpc/jsonrpc
rpc.Dial
tojsonrpc.Dial
rpc.ServeConn
tojsonrpc.ServeConn
Now your clients can connect via a TCP socket and pass over JSON, as shown in Ruby below:
require "socket"
require "json"
socket = TCPSocket.new "localhost", "8080"
# Details of JSON structure can be found here:
# https://golang.org/src/net/rpc/jsonrpc/client.go#L45
# Thanks to Albert Hafvenström (@albhaf) for his help
b = {
:method => "Compose.Details",
:params => [{ :Foo => "Foo!", :Bar => "Bar!" }],
:id => "0" # id is just echo'ed back to the client
}
socket.write(JSON.dump(b))
p JSON.load(socket.readline)
# => {"id"=>"0", "result"=>"Blah!", "error"=>nil}
Here is an updated Go RPC:
package remote
import "fmt"
// Args is structured around the client's provided parameters
// The fields need to be exported too!
type Args struct {
Foo string
Bar string
}
// Compose is our RPC functions return type
type Compose string
// Details is our exposed RPC function
func (c *Compose) Details(args *Args, reply *string) error {
fmt.Printf("Args received: %+v\n", args)
*c = "some value"
*reply = "Blah!"
return nil
}
Within a constant declaration, the predeclared identifier iota
represents successive untyped integer constants. It is reset to 0 whenever the reserved word const
appears in the source.
package main
import "fmt"
const (
foo = iota // 0
bar
_ // skip this value
baz
)
const (
beep = iota // 0 (reset)
boop
)
func main() {
fmt.Println(foo, bar, baz) // 0 1 3
fmt.Println(beep, boop) // 0 1
}
package main
import "fmt"
func main() {
for i := 1; i <= 100; i++ {
if i%3 == 0 && i%5 == 0 {
fmt.Printf("%d FizzBuzz\n", i)
} else if i%3 == 0 {
fmt.Printf("%d Fizz\n", i)
} else if i%5 == 0 {
fmt.Printf("%d Buzz\n", i)
} else {
fmt.Println(i)
}
}
}
var (
cmdOut []byte
err error
)
cmdName := "spurious"
cmdArgs := []string{"ports", "--json"}
if cmdOut, err = exec.Command(cmdName, cmdArgs...).Output(); err != nil {
fmt.Fprintln(os.Stderr, "There was an error running 'spurious ports --json' command: ", err)
os.Exit(1)
}
fmt.Println(string(cmdOut))
package main
import "fmt"
type Sqs struct {
foo string
}
func (s *Sqs) create() {
fmt.Println("I'll create stuff")
}
func NewSqs() *Sqs {
return &Sqs{"bop"}
}
func main() {
s := NewSqs()
fmt.Println(s.foo)
s.create()
}
package main
import "fmt"
type Compose string
func (c *Compose) Details() string {
*c = "beep boop"
return fmt.Sprintf("Here are your details: %v", *c)
}
func main() {
var c Compose
c = "hai"
fmt.Printf("c: %+v\n", c) // c
fmt.Println(c.Details())
fmt.Printf("c: %+v\n", c) // beep boop
}
When using json.NewDecoder
:
func main() {
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
var u User
if r.Body == nil {
http.Error(w, "Please send a request body", 400)
return
}
err := json.NewDecoder(r.Body).Decode(&u)
if err != nil {
http.Error(w, err.Error(), 400)
return
}
fmt.Println(u.Id)
})
log.Fatal(http.ListenAndServe(":8080", nil))
}
...it doesn't read the response Body completely. So when closing the response you might get an error as a stray \n
could be present later on. You'll need to drain the response instead:
defer func() {
io.CopyN(ioutil.Discard, r.Body, 512)
r.Body.Close()
}()
Note: google/go-github#317
Probably want to change this line:
To this:
As the former can cause your standard tools to be overriden. This could be used maliciously (i.e. to replace your
ls
with something that forks off a trojan downloader).