Created
November 22, 2017 08:57
-
-
Save Ionizing/233deb187f8d735f451037c16d050078 to your computer and use it in GitHub Desktop.
醋酸解离常数的数据处理
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import xlrd | |
import matplotlib.pyplot as plt | |
from scipy.interpolate import interp1d | |
path = 'Workbook1.xlsx' | |
workbook = xlrd.open_workbook(path) | |
sheet = workbook.sheet_by_index(0) | |
V_NaOH = [] | |
pH = [] | |
for row in range(1,68): | |
V_NaOH.append(sheet.row(row)[0].value) | |
pH.append(sheet.row(row)[1].value) | |
plt.plot(V_NaOH, pH) | |
# plt.show() | |
xvals = np.arange(0, V_NaOH[-1], 0.01) | |
f = interp1d(V_NaOH, pH, kind='cubic') | |
yinterp = f(xvals) | |
print('size of xvals', np.size(xvals)) | |
plt.plot(xvals, yinterp) | |
V_wanted = [] | |
pH_wanted = [] | |
for i in range(1, np.size(xvals)): | |
dx = xvals[i] - xvals[i-1] | |
dy = yinterp[i] - yinterp[i-1] | |
diff = dy/dx | |
if diff <= 1.1 and diff >= 0.9 and i in range(500, 900): | |
V_wanted.append(xvals[i]) | |
pH_wanted.append(yinterp[i]) | |
print('V_wanted', V_wanted) | |
print('pH_wanted', pH_wanted) | |
# plt.plot(V_wanted, pH_wanted, 'o') | |
intersections = [] | |
for i in range(np.size(V_wanted)): | |
if i == 0 or i == np.size(V_wanted)-1: | |
x = V_wanted[i] | |
y = pH_wanted[i] | |
intersection = y - x | |
intersections.append(intersection) | |
xp = np.arange(x-2, x+2, 0.01) | |
yp = xp + intersection | |
plt.plot(xp, yp, '--') | |
plt.plot(x, y, 'o') | |
xp = np.arange(np.average(V_wanted)-2, np.average(V_wanted)+2, 0.01) | |
yp = xp + np.average(intersections) | |
plt.plot(xp, yp, '--') | |
# Solve intersection | |
mid = (np.average(xp)*100).astype(int) | |
print(mid) | |
yi = yinterp[mid-200:mid+200] | |
print(np.size(yi), np.size(yp)) | |
# plt.plot(xp, yi, 'b--') | |
for i in range(np.size(yi)): | |
if np.abs(yi[i] - yp[i]) <= 0.1: | |
V_res = xp[i] | |
pH_res = yp[i] | |
print('@64 ', V_res, pH_res) | |
plt.plot(V_res, pH_res, 'o') | |
plt.plot(V_res*np.ones(100), np.linspace(1, pH_res, 100), '--') | |
print(i) | |
break | |
pKa = yinterp[(V_res/2*100).astype(int)] | |
print('The end point requires sodium hydroxide at volume of ', V_res/2, ' mL') | |
print('pKa = ', pKa, ', which means Ka = ', np.power(10, -pKa)) | |
plt.plot(V_res/2*np.ones(100), np.linspace(0, pKa, 100), '--') | |
plt.plot(np.linspace(0, V_res/2, 100), pKa*np.ones(100), '--') | |
plt.grid(True) | |
# plt.rc('grid', linestyle='--', color='black') | |
# plt.show() | |
plt.ylabel('pH') | |
plt.xlabel('$V_{NaOH}$') | |
plt.savefig('fig.pdf', format='pdf') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment