Last active
July 26, 2024 09:04
-
-
Save Ionizing/e6ff28f7abb13bf6c5e923a2c4d2f19e to your computer and use it in GitHub Desktop.
Plot real cell and Brillouin zone.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import numpy as np | |
from numpy.typing import NDArray | |
from scipy.spatial import Voronoi | |
import matplotlib.pyplot as plt | |
from matplotlib.axes import Axes | |
class RealCell: | |
def __init__(self, | |
cell: NDArray, | |
transform_matrix: NDArray): | |
assert cell.shape == (2, 2) | |
acell_prm = cell | |
acell_sup = transform_matrix @ acell_prm | |
self.acell_prm = acell_prm | |
self.acell_sup = acell_sup | |
bcell_prm = np.linalg.inv(acell_prm).T | |
bcell_sup = np.linalg.inv(acell_sup).T | |
self.bcell_prm = bcell_prm | |
self.bcell_sup = bcell_sup | |
@staticmethod | |
def generate_reduced_voronoi(cell: NDArray): | |
points = np.tensordot( | |
cell, np.mgrid[-1:2, -1:2], axes=(0, 0) | |
).reshape(2, -1).T | |
vor = Voronoi(points) | |
bz_vertices = [] | |
for pid, rid in zip(vor.ridge_points, vor.ridge_vertices): | |
if 4 in pid: | |
bz_vertices += rid | |
bz_vertices = list(set(bz_vertices)) | |
return np.array(vor.vertices[bz_vertices]) | |
@staticmethod | |
def generate_polygon_edges(V: NDArray): | |
assert len(V.shape) == 2 and V.shape[1] == 2 | |
centroid = np.mean(V, axis=0) | |
sorting_idx = np.argsort(np.arctan2((V-centroid)[:,0], | |
(V-centroid)[:,1])) | |
V = V[sorting_idx,:] | |
V = np.vstack((V, V[0,:])) | |
edges = [] | |
for (left, right) in zip(V[:-1], V[1:]): | |
edges.append([left, right]) | |
return np.asarray(edges) | |
@staticmethod | |
def irange(N: int): | |
start = -(N // 2) | |
end = start + N | |
return np.mgrid[start:end] | |
@staticmethod | |
def generate_polygon_edges_grid(E: NDArray, cell: NDArray, | |
*, | |
ngrid=(1,1)): | |
edges_total = np.zeros((0, 2, 2)) | |
for i in RealCell.irange(ngrid[0]): | |
for j in RealCell.irange(ngrid[1]): | |
xy = [i, j] @ cell | |
edges_shift = E[:,:,:] + xy[None, None, :] | |
edges_total = np.vstack((edges_total, edges_shift)) | |
return edges_total | |
@staticmethod | |
def edges_sort_dedup_x(E: NDArray): | |
assert len(E.shape) == 3 and \ | |
E.shape[1:] == (2, 2) | |
E = E.copy() | |
for iseg, (left, right) in enumerate(E): | |
if left[0] > right[0]: | |
E[iseg, :, :] = np.array([right, left]) | |
sorting_idx = np.argsort(E[:, 0, 0]) | |
E = E[sorting_idx, :, :] | |
return np.unique(E, axis=0) | |
@staticmethod | |
def edges_sort_dedup_y(E: NDArray): | |
assert len(E.shape) == 3 and \ | |
E.shape[1:] == (2, 2) | |
E = E.copy() | |
for iseg, (left, right) in enumerate(E): | |
if left[1] > right[1]: | |
E[iseg, :, :] = np.array([right, left]) | |
sorting_idx = np.argsort(E[:, 0, 1]) | |
E = E[sorting_idx, :, :] | |
return np.unique(E, axis=0) | |
@staticmethod | |
def edges_sort_dedup(E: NDArray, | |
*, | |
decimals=6): | |
assert len(E.shape) == 3 and \ | |
E.shape[1:] == (2, 2) | |
E = np.round(E, decimals=decimals) | |
E = RealCell.edges_sort_dedup_x(E) | |
E = RealCell.edges_sort_dedup_y(E) | |
return E | |
def generate_bz_primitive_edges(self): | |
cell = self.bcell_prm | |
V = RealCell.generate_reduced_voronoi(cell) | |
E = RealCell.generate_polygon_edges(V) | |
return E | |
def generate_bz_supercell_edges(self, | |
*, | |
ngrid=(1,1)): | |
cell = self.bcell_sup | |
V = RealCell.generate_reduced_voronoi(cell) | |
E = RealCell.generate_polygon_edges(V) | |
E = RealCell.generate_polygon_edges_grid(E, cell, ngrid=ngrid) | |
E = RealCell.edges_sort_dedup(E) | |
return E | |
@staticmethod | |
def plot_edges(ax: Axes, edges: NDArray, | |
*, | |
ls: str, | |
lw: float, | |
color: str): | |
assert len(edges.shape) == 3 and \ | |
edges.shape[1:] == (2, 2) | |
for edge in edges: | |
ax.plot(edge[:,0], edge[:,1], ls=ls, color=color, lw=lw) | |
if "__main__" == __name__: | |
cell = np.array([[ 2.7628944419999999,-1.5951578500000001], | |
[ 0.0000000000000000, 3.1903157000000002]]); | |
transform_matrix = np.array([[4, 2], | |
[0, 3]]) | |
rc = RealCell(cell, transform_matrix) | |
E_bzprm = rc.generate_bz_primitive_edges() | |
E_bzsup = rc.generate_bz_supercell_edges(ngrid=(5, 5)) | |
fig, ax = plt.subplots(figsize=(6, 6)) | |
RealCell.plot_edges(ax, E_bzprm, color="b", ls= "-", lw=1.0) | |
RealCell.plot_edges(ax, E_bzsup, color="k", ls="--", lw=1.0) | |
ax.set_aspect("equal") | |
ax.axis("off") | |
fig.tight_layout(pad=0.5) | |
fig.savefig("supbz.png", dpi=400) | |
fig.savefig("supbz.pdf") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib as mpl | |
from scipy.spatial import Voronoi | |
def get_reduced_voronoi(cell): | |
assert cell.shape == (2,2) | |
points = np.tensordot( | |
cell, np.mgrid[-1:2, -1:2], axes=(0,0) | |
).reshape(2,-1).T | |
vor = Voronoi(points) | |
bz_facets = [] | |
bz_ridges = [] | |
bz_vertices = [] | |
for pid, rid in zip(vor.ridge_points, vor.ridge_vertices): | |
if 4 in pid: | |
bz_ridges.append(vor.vertices[np.r_[rid, [rid[0]]]]) | |
bz_facets.append(vor.vertices[rid]) | |
bz_vertices += rid | |
bz_vertices = list(set(bz_vertices)) | |
return (vor.vertices[bz_vertices], # V | |
bz_ridges, # E | |
bz_facets) # F | |
def plot_reduced_voronoi(cell, ax, lc, lw, ls, reci=False): | |
# icell = np.linalg.inv(cell).T | |
icell = cell | |
V, E, F = get_reduced_voronoi(icell) | |
# l1, l2 = np.linalg.norm(icell, axis=1) | |
xmin = min(ax.get_xlim()[0], icell[:,0].min()) | |
xmax = max(ax.get_xlim()[1], icell[:,0].max()) | |
ymin = min(ax.get_ylim()[0], icell[:,1].min()) | |
ymax = max(ax.get_ylim()[1], icell[:,1].max()) | |
for xx in E: | |
ax.plot(xx[:,0], xx[:,1], color=lc, lw=lw, ls=ls) | |
xmin = min(xmin, xx[:,0].min()) | |
xmax = max(xmax, xx[:,0].max()) | |
ymin = min(ymin, xx[:,1].min()) | |
ymax = max(ymax, xx[:,1].max()) | |
arrowprops = dict(arrowstyle="->", | |
shrinkA=0, | |
shrinkB=0, | |
color=lc) | |
s = "b" if reci else "a" | |
print(icell, tuple(icell[0,:]), tuple(icell[1,:])) | |
ax.text(*icell[0,:], s+"1", color=lc) | |
ax.annotate("", xy=tuple(icell[0,:]), xytext=(0,0), arrowprops=arrowprops) | |
ax.text(*icell[1,:], s+"2", color=lc) | |
ax.annotate("", xy=tuple(icell[1,:]), xytext=(0,0), arrowprops=arrowprops) | |
ax.set_xlim(xmin-0.02, xmax+0.02) | |
ax.set_ylim(ymin-0.02, ymax+0.02) | |
if '__main__' == __name__: | |
# 2D system only | |
# cell_primitive = np.array([[ 3.1903157000000002, 0.0000000000000000], | |
# [-1.5951578500000001, 2.7628944419999999]]); | |
cell_primitive = np.array([[ 2.7628944419999999,-1.5951578500000001], | |
[ 0.0000000000000000, 3.1903157000000002]]); | |
transform_matrix = np.array([[4, 2], | |
[0, 3]]) | |
cell_supercell = transform_matrix @ cell_primitive | |
icell_primitive = np.linalg.inv(cell_primitive).T | |
icell_supercell = np.linalg.inv(cell_supercell).T | |
fig, axs = plt.subplots(ncols=2, figsize=(8, 4), dpi=400) | |
ax = axs[0] | |
ax.set_xlim(0,0.00001) | |
ax.set_ylim(0,0.00001) | |
plot_reduced_voronoi(cell_primitive, ax, lc="k", lw=1.0, ls='-', reci=False) | |
plot_reduced_voronoi(cell_supercell, ax, lc="b", lw=1.0, ls='-', reci=False) | |
ax.set_aspect('equal') | |
ax.axis('off') | |
ax = axs[1] | |
ax.set_xlim(0,0.00001) | |
ax.set_ylim(0,0.00001) | |
plot_reduced_voronoi(icell_primitive, ax, lc="k", lw=1.0, ls='-', reci=True) | |
plot_reduced_voronoi(icell_supercell, ax, lc="b", lw=1.0, ls='-', reci=True) | |
ax.set_aspect('equal') | |
ax.axis('off') | |
fig.tight_layout(pad=0.0) | |
fig.savefig("bz.png", dpi=400) |
Author
Ionizing
commented
Jun 19, 2024
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment