Last active
August 29, 2015 14:17
-
-
Save IshitaTakeshi/102121ad70f5a632ee25 to your computer and use it in GitHub Desktop.
The kalman filter
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/python | |
# -*- coding: utf-8 -*- | |
import numpy as np | |
from matplotlib import pyplot | |
from numpy.random import multivariate_normal | |
class StateViewer(object): | |
def __init__(self, dt, n_iterations): | |
self.dt = dt | |
self.n_iterations = n_iterations | |
self.true_positions = [] | |
self.true_velocities = [] | |
self.estimated_positions = [] | |
self.estimated_velocities = [] | |
def add(self, x_true, x_est): | |
self.true_positions.append(x_true.item((0, 0))) | |
self.true_velocities.append(x_true.item((1, 0))) | |
self.estimated_positions.append(x_est.item((0, 0))) | |
self.estimated_velocities.append(x_est.item((1, 0))) | |
def show(self): | |
t = np.arange(0, self.n_iterations*dt, dt) | |
true_position_line = pyplot.plot(t, self.true_positions, 'b-') | |
estimated_position_line = pyplot.plot(t, | |
self.estimated_positions, | |
'b--') | |
true_velocity_line = pyplot.plot(t, self.true_velocities, 'g-') | |
estimated_velocity_line = pyplot.plot(t, | |
self.estimated_velocities, | |
'g--') | |
pyplot.legend((true_position_line[0], estimated_position_line[0], | |
true_velocity_line[0], estimated_velocity_line[0]), | |
('true position', 'estimated position', | |
'true velocity', 'estimated velocity')) | |
pyplot.show() | |
def get_driver_input(): | |
return np.random.uniform(-1, 1) | |
dt = 0.1 #dt[s]ごとに状態を測定し、更新する | |
n_iterations = 2000 | |
Q = np.identity(2) * 3 | |
R = np.identity(2) * 3 | |
B = np.matrix([dt**2/2, dt]).T | |
F = np.matrix([[1, dt], | |
[0, 1]]) | |
x_true = np.matrix([0, 0]).T #初期位置は0[m]、速度も0[m/s]とする | |
x_est = x_true #初期状態はわかっている | |
#誤差行列 | |
#これの対角成分の和を最小化するのが目的 | |
P = np.matrix([[0.01, 0], | |
[0, 0.01]]) | |
H = np.matrix([[2/340.0, 0], | |
[0, 2/340.0]]) | |
viewer = StateViewer(dt, n_iterations) | |
for t in range(n_iterations): | |
u = get_driver_input() | |
w = multivariate_normal([0, 0], Q).reshape(2, 1) | |
x_true = F*x_true + B*u + w | |
v = multivariate_normal([0, 0], R).reshape(2, 1) | |
z = H*x_true + v | |
x_odo = F*x_est + B*u | |
P = F*P*F.T + Q | |
S = R + H*P*H.T | |
K = P + H.T*S.I | |
x_est = x_odo + K*(z-H*x_odo) | |
P = P - K*H*P | |
viewer.add(x_true, x_est) | |
viewer.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment