Last active
April 8, 2018 09:39
-
-
Save IshitaTakeshi/f2a4a9b92af3ed83c2db5384821d6b66 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
*.csv |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
type Lasso <: Model | |
w::AA{Float64, 1} | |
b::Float64 | |
λ::Float64 | |
η::Float64 | |
Lasso(;λ = 1.0, η = 0.01) = new(zeros(Float64, 0), 0., λ, η) | |
end | |
proxₗ₁(λ, w) = sign.(w) .* max.(abs.(w) - λ, 0) | |
function update!{T <: Real}(model::Lasso, X::AA{Float64, 2}, y::AA{T, 1}) | |
for i in 1:size(X, 2) | |
Δw, Δb = ∇L(model, view(X, :, i), y[i]) | |
model.w = proxₗ₁(model.λ, model.w - model.η * Δw) | |
model.b = proxₗ₁(model.λ, model.b - model.η * Δb) | |
end | |
return model | |
end | |
function init_weights!(model::Lasso, X::AA{Float64, 2}) | |
model.w = zeros(size(X, 1)) | |
model.b = 0 | |
return model | |
end | |
function fit!{T <: Real}(model::Lasso, X::AA{Float64, 2}, y::AA{T, 1}; | |
n_iter = 200) | |
assert(size(X, 2) == size(y, 1)) | |
init_weights!(model, X) | |
for i in 1:n_iter | |
model = update!(model, X, y) | |
end | |
return model | |
end | |
function ∇L{T <: Real}(model::Lasso, x::AA{Float64, 1}, y::T) | |
yₚ = predict(model, x) | |
Δ = yₚ - y | |
return x * Δ, Δ | |
end | |
function ∇L{T <: Real}(model::Lasso, X::AA{Float64, 2}, y::AA{T, 1}) | |
n_features, n_samples = size(X) | |
Δw = zeros(n_features) | |
Δb = 0 | |
for i in 1:n_samples | |
Δwᵢ, Δbᵢ = ∇L(model, view(X, :, i), y[i]) | |
Δw += Δwᵢ | |
Δb += Δbᵢ | |
end | |
Δw = Δw / n_samples | |
Δb = Δb / n_samples | |
return Δw, Δb | |
end | |
predict(model::Lasso, x::AA{Float64, 1}) = dot(model.w, x) + model.b | |
predict(model::Lasso, X::AA{Float64, 2}) = vec(model.w' * X + model.b) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# data is available at https://archive.ics.uci.edu/ml/datasets/Wine+Quality | |
using CSV | |
srand(1234) | |
const AA = AbstractArray | |
include("model.jl") | |
include("utils.jl") | |
include("lasso.jl") | |
include("visualization.jl") | |
include("datasets/wine.jl") | |
include("datasets/make_regression.jl") | |
function search_param(X::AA{Float64, 2}, y::AA{Float64, 1}, λ::Float64) | |
min_error = Inf | |
argmin_η = 0 | |
argmin_model = nothing | |
for η in [1e-6, 5e-6, 1e-5, 5e-5, 1e-4] | |
model = Lasso(λ = λ, η = η) | |
model = fit!(model, X, y, n_iter = 200) | |
E = mean_squared_error(y, predict(model, X)) | |
if E < min_error | |
min_error = E | |
argmin_η = η | |
argmin_model = model | |
end | |
end | |
return min_error, argmin_η, argmin_model | |
end | |
X, y = make_regression(400, [4.0, 0.0], 0.8; noise = 3.0) | |
for λ in [0.0, 1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4] | |
min_error, argmin_η, model = search_param(X, y, λ) | |
println("") | |
println("λ = $λ η = $argmin_η") | |
println("error = $min_error") | |
println(model.w) | |
println(model.b) | |
plot_regression_line(model, X, y) | |
clf() | |
plot_regression_surface(model, X, y) | |
clf() | |
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
abstract type Model end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Base.Test | |
import Base.error | |
const AA = AbstractArray | |
include("utils.jl") | |
function test_mean_std_normalization() | |
X = Float64[ | |
3 4 -1 3 0; | |
9 1 6 -8 1; | |
3 9 0 -4 -4; | |
5 -1 9 7 -1; | |
] | |
X = mean_std_normalization(X) | |
for x in mean(X, 1) | |
@test abs(x) ≈ 0.0 atol=1e-10 | |
end | |
for x in std(X, 1) | |
@test abs(x) ≈ 1.0 atol=1e-10 | |
end | |
end | |
function test_error() | |
yₜ = [1, 2, 1, 3, 4] | |
yₚ = [1, 3, 1, 1, 3] | |
@test error(yₜ, yₚ) == 1.2 | |
end | |
test_mean_std_normalization() | |
test_error() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function meshgrid(xs1::AA{Float64, 1}, xs2::AA{Float64, 1}) | |
return ([x₁ for x₁=xs1, x₂=xs2], [x₂ for x₁=xs1, x₂=xs2]) | |
end | |
function train_test_split(X, y; train_ratio = 0.8) | |
assert(size(X, 2) == size(y, 1)) | |
N = size(X, 2) | |
n_train = Int(round(N * train_ratio)) | |
indices = shuffle(1:N) | |
train_indices = indices[1:n_train] | |
test_indices = indices[n_train+1:end] | |
X_train, X_test = X[:, train_indices], X[:, test_indices] | |
y_train, y_test = y[train_indices], y[test_indices] | |
return X_train, X_test, y_train, y_test | |
end | |
function mean_std_normalization(X::AA{Float64, 2}) | |
X = X .- mean(X, 1) | |
X = X ./ std(X, 1) | |
return X | |
end | |
function mean_squared_error{T, U <: Real}(yₜ::AA{T, 1}, yₚ::AA{U, 1}) | |
assert(length(yₜ) == length(yₚ)) | |
N = length(yₜ) | |
dot(yₜ - yₚ, yₜ - yₚ) / N | |
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using PyPlot | |
function plot_regression_line(model::Model, | |
X::AA{Float64, 2}, y::AA{Float64, 1}) | |
N = 201 | |
n_features = size(X, 1) | |
for i in 1:n_features | |
subplot(n_features, 1, i) | |
u = view(X, i, :) | |
scatter(u, y) | |
# draw the regression line | |
Xₚ = zeros(n_features, N) | |
v = linspace(minimum(u), maximum(u), N) | |
Xₚ[i, :] = v | |
plot(v, predict(model, Xₚ)) | |
end | |
show() | |
end | |
function plot_regression_surface(model::Model, X::AA{Float64, 2}, y::AA{Float64, 1}) | |
assert(size(X, 1) == 2) | |
x1, x2 = view(X, 1, :), view(X, 2, :) | |
scatter3D(x1, x2, y) | |
N = 201 | |
L₁, H₁ = minimum(x1), maximum(x1) | |
L₂, H₂ = minimum(x2), maximum(x2) | |
xs1 = linspace(L₁, H₁, N) | |
xs2 = linspace(L₂, H₂, N) | |
X₁, X₂ = meshgrid(xs1, xs2) | |
Y = [predict(model, [x₁, x₂]) for x₁=xs1, x₂=xs2] | |
plot_surface(X₁, X₂, Y) | |
show() | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment