Created
September 14, 2015 09:51
-
-
Save ItoTomoki/93c97c97095b6914a9fc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #encoding:utf-8 | |
| from gensim.models import word2vec | |
| import numpy as np | |
| import json | |
| import os | |
| from ast import literal_eval | |
| import re | |
| import sys | |
| import MeCab | |
| from collections import defaultdict | |
| from mpl_toolkits.mplot3d.axes3d import Axes3D | |
| import sklearn.decomposition | |
| import matplotlib.pyplot as plt | |
| from sklearn.metrics import roc_auc_score | |
| from sklearn.metrics import precision_recall_curve | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| #modelwiki = word2vec.Word2Vec.load("wiki1-4.model") | |
| #data = word2vec.Text8Corpus('allcomment.txt') | |
| #modelnico = word2vec.Word2Vec(data, size=50) | |
| modelnico = word2vec.Word2Vec.load("allcomment2.model") | |
| #modelnico = word2vec.Word2Vec.load("allcomment1.model") | |
| model = modelnico | |
| """ | |
| word = [u"腹筋"] | |
| out2 = modelnico.most_similar(positive= word) | |
| wordarray = [] | |
| for j in out2: | |
| wordarray.append(j[0]) | |
| print j[0] | |
| """ | |
| #レコメンド絡み | |
| def wordvec(word,model = modelnico): | |
| try: | |
| v = model[word]/np.linalg.norm(model[word]) | |
| return v | |
| except: | |
| return np.zeros(len(model[model.vocab.keys()[0]])) | |
| def morphological_analysis(text): | |
| word2freq = defaultdict(int) | |
| mecab = MeCab.Tagger('-u /usr/local/Cellar/mecab-ipadic/2.7.0-20070801/lib/mecab/dic/ipadic/ncnc.dic') | |
| node = mecab.parseToNode(text) | |
| while node: | |
| if node.feature.split(",")[0] == "名詞": | |
| word2freq[node.surface] += 1 | |
| node = node.next | |
| return word2freq | |
| def output(word2freq): | |
| for word, freq in sorted(word2freq.items(),key = lambda x: x[1], reverse=True): | |
| print str(freq), word | |
| def makevec(word2freq): | |
| freqcount = 0 | |
| v = np.zeros(len(model[model.vocab.keys()[0]])) | |
| for word, freq in sorted(word2freq.items(),key = lambda x: x[1], reverse=True): | |
| if int(freq) > 5: | |
| v += freq * wordvec(word.decode("utf-8")) | |
| freqcount += freq | |
| if (v == np.zeros(len(model[model.vocab.keys()[0]]))).all(): | |
| return np.zeros(len(model[model.vocab.keys()[0]])) | |
| else: | |
| return (v/np.linalg.norm(v)) | |
| def createvector(video_id,ID="0000"): | |
| if video_id == "sm9": | |
| return np.zeros(len(model[model.vocab.keys()[0]])) | |
| else: | |
| filename = ("comment" + ID + "/" + str(video_id) + ".txt") | |
| f = open(filename) | |
| data = f.read() | |
| f.close() | |
| v = makevec(morphological_analysis(data)) | |
| return v | |
| vectorinfo = {} | |
| files = os.listdir('../tcserv.nii.ac.jp/access/[email protected]/832c5b059b15f647/nicocomm/data/video') | |
| textinfo = {} | |
| thread = {} | |
| count = 0 | |
| #for file in files[1:2]: | |
| for ID in ["0000","0001","0002","0003"]: | |
| #print file | |
| filename = ID + ".dat" | |
| filepass = '../tcserv.nii.ac.jp/access/[email protected]/832c5b059b15f647/nicocomm/data/video/' + str(filename) | |
| f = open(filepass) | |
| lines2 = f.readlines() # 1行毎にファイル終端まで全て読む(改行文字も含まれる) | |
| data1 = f.read() # ファイル終端まで全て読んだデータを返す | |
| f.close() | |
| Lines2 = {} | |
| count = 0 | |
| textinfo[ID] = {} | |
| thread[ID] = {} | |
| for line in lines2: | |
| try: | |
| Lines2[count] = literal_eval(line) | |
| except: | |
| line = line.replace('null', '"null"') | |
| Lines2[count] = literal_eval(line) | |
| thread[ID][(Lines2[count]["video_id"] + ".dat")] = Lines2[count] | |
| #thread["0000"][(Lines2[count]["video_id"] + ".dat")]["title"] = Lines2[count]["title"].decode('unicode_escape') | |
| textinfo[ID][Lines2[count]["video_id"]] = Lines2[count]["title"].decode('unicode_escape') | |
| count += 1 | |
| for ID in ["0000","0001","0002","0003"]: | |
| vectorinfo[ID] = {} | |
| for j in textinfo[ID].keys(): | |
| #print j | |
| try: | |
| vectorinfo[ID][j] = createvector(video_id = j, ID = ID) | |
| except: | |
| vectorinfo[ID][j] = np.zeros(len(model[model.vocab.keys()[0]])) | |
| print ID,j | |
| def selectTitleFromID(video_id,id="0000"): | |
| titlerank = {} | |
| for Id in vectorinfo.keys(): | |
| try: | |
| inputvec = vectorinfo[Id][video_id] | |
| except: | |
| continue | |
| print Id | |
| for ID in vectorinfo.keys(): | |
| for j in vectorinfo[ID].keys(): | |
| if np.dot(vectorinfo[ID][j], inputvec) > 0.8: | |
| titlerank[j] = np.dot(vectorinfo[ID][j], inputvec) | |
| k = sorted(titlerank.items(), key=lambda x: x[1],reverse = True) | |
| for m in k[0:20]: | |
| for ID in textinfo.keys(): | |
| try: | |
| print textinfo[ID][m[0]], m[0], m[1] | |
| print "view_counter", thread[ID][(str(m[0]) + ".dat")]["view_counter"] | |
| print "comment_counter", thread[ID][(str(m[0]) + ".dat")]["comment_counter"] | |
| tag = "" | |
| for j in thread[ID][(str(m[0]) + ".dat")]["tags"]: | |
| tag += (j["tag"].decode('unicode_escape') + ",") | |
| print ("tags: " + tag[0:-1]) | |
| #print j, textinfo[j], np.dot(vectorinfo[j], vectorinfo[video_id]) | |
| except: | |
| continue | |
| def selectTitleFromWord(wordarray): | |
| v = np.zeros(len(model[model.vocab.keys()[0]])) | |
| for j in wordarray: | |
| v += wordvec(j) | |
| v = v/np.linalg.norm(v) | |
| titlerank = {} | |
| for ID in vectorinfo.keys(): | |
| for j in vectorinfo[ID].keys(): | |
| if np.dot(v, vectorinfo[ID][j]) > 0.5: | |
| titlerank[j] = np.dot(v, vectorinfo[ID][j]) | |
| k = sorted(titlerank.items(), key=lambda x: x[1],reverse = True) | |
| for m in k[0:20]: | |
| for ID in textinfo.keys(): | |
| try: | |
| print textinfo[ID][m[0]], m[0], m[1] | |
| except: | |
| continue | |
| l = {} | |
| for ID in ["0000","0001","0002","0003"]: | |
| l[ID] = vectorinfo[ID].keys() | |
| #PCAによる図示 | |
| dim=3 | |
| pca=sklearn.decomposition.PCA(dim) | |
| for ID in ["0000","0001","0002","0003"]: | |
| for j in range(0,len(l[ID])): | |
| if (ID == "0000") & (j == 0): | |
| vectorMat = vectorinfo["0000"][l["0000"][0]] | |
| else: | |
| vectorMat = np.c_[vectorMat,vectorinfo[ID][l[ID][j]]] | |
| data = vectorMat.T | |
| result=pca.fit_transform(data) | |
| from mpl_toolkits.mplot3d.axes3d import Axes3D | |
| dim=3 | |
| pca=sklearn.decomposition.PCA(dim) | |
| fig=plt.figure() | |
| ax=Axes3D(fig) | |
| ax.scatter3D(result.T[0],result.T[1],result.T[2]) | |
| plt.show() | |
| dim=2 | |
| pca=sklearn.decomposition.PCA(dim) | |
| fig=plt.figure() | |
| plt.scatter(result.T[0],result.T[1]) | |
| plt.show() | |
| viewcounters = [] | |
| for ID in ["0000","0001","0002","0003"]: | |
| for j in thread[ID].keys(): | |
| viewcounters.append(thread[ID][j]["view_counter"]) | |
| commentcounter = [] | |
| for ID in ["0000","0001","0002","0003"]: | |
| for j in thread[ID].keys(): | |
| commentcounter.append(thread[ID][j]['comment_counter']) | |
| commentcounter2 = list(commentcounter) | |
| commentcounter2.sort(key=int) | |
| plt.plot(commentcounter2) | |
| counters2 = [] | |
| for j in thread["0003"].keys(): | |
| counters2.append(thread["0003"][j]["view_counter"]) | |
| commentcounter3 = [] | |
| for j in thread["0003"].keys(): | |
| commentcounter3.append(thread["0003"][j]["comment_counter"]) | |
| plt.scatter(counters2,commentcounter3) | |
| plt.show() | |
| result2 = result[0] | |
| result3 = result[0] | |
| for ID in ["0000","0001","0002","0003"]: | |
| for j in range(0,len(l[ID])): | |
| if thread[ID][(str(l[ID][j]) + ".dat")]["view_counter"] > 10000:#np.median(counters): | |
| result2 = np.c_[result2,result[j]] | |
| else: | |
| result3 = np.c_[result3,result[j]] | |
| for ID in ["0000","0001","0002","0003"]: | |
| for j in range(1,len(l[ID])): | |
| if thread[ID][(str(l[ID][j]) + ".dat")]["comment_counter"] > 2500:#np.median(counters): | |
| result2 = np.c_[result2,result[j]] | |
| else: | |
| result3 = np.c_[result3,result[j]] | |
| fig=plt.figure() | |
| ax=Axes3D(fig) | |
| ax.scatter3D(result3[0],result3[1],result3[2],c= "blue") | |
| ax.scatter3D(result2[0],result2[1],result2[2],c="red") | |
| plt.show() | |
| plt.scatter(result3[0],result3[1],c= "b") | |
| plt.scatter(result2[0],result2[1],c="r") | |
| plt.show() | |
| #機会学習 | |
| #34544は平均値で10760.0は中央値(再生回数) | |
| from sklearn import neighbors,svm | |
| from sklearn.metrics import classification_report | |
| target = [] | |
| for ID in ["0000","0001","0002","0003"]: | |
| for j in range(0,len(l[ID])): | |
| if thread[ID][(str(l[ID][j]) + ".dat")]["view_counter"] > 34544: | |
| target.append(0) | |
| else: | |
| target.append(2) | |
| """ | |
| elif thread[ID][(str(l[ID][j]) + ".dat")]["view_counter"] > 10760.0: | |
| target.append(1) | |
| """ | |
| else: | |
| target.append(2) | |
| target = np.array(target) | |
| scores = [] | |
| knn = neighbors.KNeighborsClassifier(n_neighbors=4) #metric='manhattan' | |
| classifier = svm.SVC(kernel='linear', probability=True)#,class_weight={0:3,2:1}) | |
| for j in range(0,10): | |
| perm = np.random.permutation(len(target)) | |
| target2 = target[perm] | |
| data2 = data[perm] | |
| x_train, x_test, y_train, y_test = cross_validation.train_test_split(data2, target2, test_size=0.2) | |
| knn.fit(x_train,y_train) | |
| label_predict = knn.predict(x_test) | |
| y_pred = label_predict | |
| y_true = y_test | |
| print(classification_report(y_true, y_pred))#, target_names=target_names)) | |
| for j in range(0,10): | |
| perm = np.random.permutation(len(target)) | |
| target2 = target[perm] | |
| data2 = data[perm] | |
| x_train, x_test, y_train, y_test = cross_validation.train_test_split(data2, target2, test_size=0.2) | |
| classifier.fit(x_train,y_train) | |
| label_predict = knn.predict(x_test) | |
| y_pred = label_predict | |
| y_true = y_test | |
| print(classification_report(y_true, y_pred)) | |
| #交差検定 | |
| from sklearn import cross_validation | |
| from sklearn.cross_validation import KFold | |
| scores = cross_validation.cross_val_score(knn, data, target, cv=5) | |
| print np.mean(scores) | |
| scores = cross_validation.cross_val_score(classifier, data, target, cv=5) | |
| print np.mean(scores) | |
| scores = cross_validation.cross_val_score(logreg, data, target, cv=5) | |
| print np.mean(scores) | |
| kf = KFold(len(target), n_folds=10, shuffle=True) | |
| aucs = [] | |
| for train, val in kf: | |
| X_train, y_train = np.array(data)[train], np.array(target)[train] | |
| X_test, y_test = np.array(data)[val], np.array(target)[val] | |
| clf_cv = svm.SVC(kernel='linear', probability=True) | |
| clf_cv.fit(X_train, y_train) | |
| y_pred = clf_cv.predict(X_test) | |
| y_true = y_test | |
| print(classification_report(y_true, y_pred)) | |
| y_pred_cv = clf_cv.predict_proba(X_test)[:, 1] | |
| #auc = roc_auc_score(y_test, y_pred_cv) | |
| #aucs.append(auc) | |
| print np.mean(aucs), np.std(aucs) | |
| for train, val in kf: | |
| X_train, y_train = np.array(data)[train], np.array(target)[train] | |
| X_test, y_test = np.array(data)[val], np.array(target)[val] | |
| clf_cv = neighbors.KNeighborsClassifier(n_neighbors=10) | |
| clf_cv.fit(X_train, y_train) | |
| y_pred = clf_cv.predict(X_test) | |
| y_true = y_test | |
| print(classification_report(y_true, y_pred)) | |
| #print X_test.shape | |
| y_pred_cv = clf_cv.predict_proba(X_test)[:,1] | |
| auc = roc_auc_score(y_test, y_pred_cv) | |
| aucs.append(auc) | |
| print np.mean(aucs), np.std(aucs) | |
| #ロジスィック回帰 | |
| from sklearn import linear_model | |
| logreg = linear_model.LogisticRegression(C=1e5) | |
| for train, val in kf: | |
| X_train, y_train = np.array(data)[train], np.array(target)[train] | |
| X_test, y_test = np.array(data)[val], np.array(target)[val] | |
| logreg = linear_model.LogisticRegression(C=1e5) | |
| logreg.fit(X_train, y_train) | |
| y_pred = logreg.predict(X_test) | |
| y_true = y_test | |
| print(classification_report(y_true, y_pred)) | |
| #print X_test.shape | |
| y_pred_cv = logreg.predict_proba(X_test)[:,1] | |
| #auc = roc_auc_score(y_test, y_pred_cv) | |
| #aucs.append(auc) | |
| print np.mean(aucs), np.std(aucs) | |
| #tf-idf | |
| def tokenize(text): | |
| """ | |
| wakati = MeCab.Tagger("-O wakati -u /usr/local/Cellar/mecab-ipadic/2.7.0-20070801/lib/mecab/dic/ipadic/ncnc.dic") | |
| return wakati.parse(text.encode("utf-8")) | |
| """ | |
| watatitext = [] | |
| mecab = MeCab.Tagger('-u /usr/local/Cellar/mecab-ipadic/2.7.0-20070801/lib/mecab/dic/ipadic/ncnc.dic') | |
| node = mecab.parseToNode(text.encode("utf-8")) | |
| while node: | |
| if node.feature.split(",")[0] == "名詞": | |
| watatitext.append(node.surface) | |
| node = node.next | |
| return watatitext | |
| token_dict = {} | |
| for ID in ["0000","0001","0002","0003"]: | |
| for video_id in l[ID]: | |
| if video_id == "sm9": | |
| continue | |
| else: | |
| try: | |
| filename = ("comment" + ID + "/" + str(video_id) + ".txt") | |
| f = open(filename) | |
| data = f.read() | |
| token_dict[video_id] = str(data) | |
| except: | |
| print "comment" + ID + "/" + str(video_id) + ".txt" | |
| tfidf = TfidfVectorizer(tokenizer=tokenize) | |
| tfs = tfidf.fit_transform(token_dict.values()) | |
| #サポートベクトル回帰 | |
| from sklearn import svm | |
| from sklearn import cross_validation | |
| viewcountlist = [] | |
| for ID in ["0000","0001","0002","0003"]: | |
| for j in range(0,len(l[ID])): | |
| viewcountlist.append(thread[ID][(str(l[ID][j]) + ".dat")]["view_counter"]) | |
| #データを6割をトレーニング、4割をテスト用とする | |
| x_train, x_test, y_train, y_test = cross_validation.train_test_split(data, np.array(viewcountlist), test_size=0.2) | |
| # 線でつないでplotする用にx_test・y_testをx_testの昇順に並び替える | |
| index = y_test.argsort(0).reshape(len(y_test)) | |
| x_test = x_test[index] | |
| y_test = y_test[index] | |
| # サポートベクトル回帰を学習データ使って作成 | |
| reg = svm.SVR(kernel='rbf', C=10).fit(x_train, y_train) | |
| reg = logreg.fit(x_train, y_train) | |
| # テストデータに対する予測結果のPLOT | |
| plt.plot(y_test) | |
| plt.plot(reg.predict(x_test),c = "red") | |
| plt.show() | |
| # 決定係数R^2 | |
| print reg.score(x_test, y_test) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
http://qiita.com/ynakayama/items/234ad00ae520030217ab