Last active
April 29, 2021 21:29
-
-
Save IvanYashchuk/1b5643126037bb41064a00a969b805ac to your computer and use it in GitHub Desktop.
FEniCS solver + Zygote.jl + Turing.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using PyFenicsAD | |
using Zygote | |
using PyCall | |
using Turing | |
import LinearAlgebra: norm | |
using Random, Distributions | |
fenics = pyimport("fenics") | |
fenics.set_log_level(fenics.LogLevel.ERROR) | |
fa = pyimport("fenics_adjoint") | |
ufl = pyimport("ufl") | |
n = 25 | |
mesh = fa.UnitSquareMesh(n ,n) | |
V = fenics.FunctionSpace(mesh, "P", 1) | |
# Define FEniCS function using Python's fenics, fenics_adjoint and ufl | |
function solve_fenics(kappa0, kappa1) | |
f = fa.Expression( | |
"10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)", degree=2 | |
) | |
u = fa.Function(V) | |
bcs = [fa.DirichletBC(V, fa.Constant(0.0), "on_boundary")] | |
inner, grad, dx = ufl.inner, ufl.grad, ufl.dx | |
JJ = 0.5 * inner(kappa0 * grad(u), grad(u)) * dx - kappa1 * f * u * dx | |
v = fenics.TestFunction(V) | |
F = fenics.derivative(JJ, u, v) | |
fa.solve(F == 0, u, bcs=bcs) | |
return u | |
end | |
# This is boilerplate code for registering Python's FEniCS function in Zygote | |
# Only solve_fenics and templates need to modified from code to code | |
# zygote_solve_fenics is a wrapper function that calls solve_fenics is differentiable | |
templates = (fa.Constant(0.0), fa.Constant(0.0)) | |
zygote_solve_fenics(inputs...) = fem_eval(solve_fenics, templates, inputs...)[1] | |
Zygote.@adjoint function zygote_solve_fenics(inputs...) | |
pyout = pycall(fem_eval, PyObject, solve_fenics, templates, inputs...) | |
numpy_output, fenics_output, fenics_inputs, tape = [get(pyout, PyObject, i) for i in 0:3] | |
function vjp_fun(g) | |
vjp_out = vjp_fem_eval(g, fenics_output, fenics_inputs, tape) | |
end | |
return get(pyout, 0), vjp_fun | |
end | |
true_kappa0 = [1.25] | |
true_kappa1 = [0.55] | |
true_solution = zygote_solve_fenics(true_kappa0, true_kappa1) | |
# perturb state solution and create synthetic measurements | |
noise_level = 0.05 | |
MAX = norm(true_solution) | |
noise = rand(Normal(0, noise_level * MAX), size(true_solution)) | |
noisy_solution = true_solution + noise | |
# fenics_noisy_solution = numpy_to_fenics(noisy_solution, fenics.Function(V)) | |
Turing.setadbackend(:zygote) | |
Turing.turnprogress(true) | |
@model function fit_diffusion(data) | |
σ ~ InverseGamma(3, 0.5) | |
kappa0 ~ truncated(Normal(1.0, 0.5), 1e-5, 2) | |
kappa1 ~ truncated(Normal(0.7, 0.5), 1e-5, 2) | |
predicted_solution = zygote_solve_fenics([kappa0], [kappa1]) | |
data ~ MvNormal(predicted_solution, σ) | |
end | |
model = fit_diffusion(noisy_solution) | |
chain = sample(model, NUTS(.65), 1000) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
PyFenicsAD is available at https://github.com/IvanYashchuk/PyFenicsAD.jl