Last active
May 23, 2020 13:20
-
-
Save IvanYashchuk/f4da070d8401e039ee43ad105331a209 to your computer and use it in GitHub Desktop.
Failing adjoint. Run with ./ex3 -use_ifunc -ts_monitor -ts_adjoint_monitor -ts_type theta -ts_theta_theta 1.0
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
static char help[] ="Solves a simple time-dependent linear PDE (the heat equation).\n\ | |
Input parameters include:\n\ | |
-m <points>, where <points> = number of grid points\n\ | |
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side\n\ | |
-use_ifunc : Use IFunction/IJacobian interface\n\ | |
-debug : Activate debugging printouts\n\ | |
-nox : Deactivate x-window graphics\n\n"; | |
/* | |
Concepts: TS^time-dependent linear problems | |
Concepts: TS^heat equation | |
Concepts: TS^diffusion equation | |
Processors: 1 | |
*/ | |
/* ------------------------------------------------------------------------ | |
This program solves the one-dimensional heat equation (also called the | |
diffusion equation), | |
u_t = u_xx, | |
on the domain 0 <= x <= 1, with the boundary conditions | |
u(t,0) = 0, u(t,1) = 0, | |
and the initial condition | |
u(0,x) = sin(6*pi*x) + 3*sin(2*pi*x). | |
This is a linear, second-order, parabolic equation. | |
We discretize the right-hand side using finite differences with | |
uniform grid spacing h: | |
u_xx = (u_{i+1} - 2u_{i} + u_{i-1})/(h^2) | |
We then demonstrate time evolution using the various TS methods by | |
running the program via | |
ex3 -ts_type <timestepping solver> | |
We compare the approximate solution with the exact solution, given by | |
u_exact(x,t) = exp(-36*pi*pi*t) * sin(6*pi*x) + | |
3*exp(-4*pi*pi*t) * sin(2*pi*x) | |
Notes: | |
This code demonstrates the TS solver interface to two variants of | |
linear problems, u_t = f(u,t), namely | |
- time-dependent f: f(u,t) is a function of t | |
- time-independent f: f(u,t) is simply f(u) | |
The parallel version of this code is ts/tutorials/ex4.c | |
------------------------------------------------------------------------- */ | |
/* | |
Include "petscts.h" so that we can use TS solvers. Note that this file | |
automatically includes: | |
petscsys.h - base PETSc routines petscvec.h - vectors | |
petscmat.h - matrices | |
petscis.h - index sets petscksp.h - Krylov subspace methods | |
petscviewer.h - viewers petscpc.h - preconditioners | |
petscksp.h - linear solvers petscsnes.h - nonlinear solvers | |
*/ | |
#include <petscts.h> | |
#include <petscdraw.h> | |
/* | |
User-defined application context - contains data needed by the | |
application-provided call-back routines. | |
*/ | |
typedef struct { | |
Vec solution; /* global exact solution vector */ | |
PetscInt m; /* total number of grid points */ | |
PetscReal h; /* mesh width h = 1/(m-1) */ | |
PetscBool debug; /* flag (1 indicates activation of debugging printouts) */ | |
PetscViewer viewer1,viewer2; /* viewers for the solution and error */ | |
PetscReal norm_2,norm_max; /* error norms */ | |
Mat A; /* RHS mat, used with IFunction interface */ | |
PetscReal oshift; /* old shift applied, prevent to recompute the IJacobian */ | |
} AppCtx; | |
/* | |
User-defined routines | |
*/ | |
extern PetscErrorCode InitialConditions(Vec,AppCtx*); | |
extern PetscErrorCode RHSMatrixHeat(TS,PetscReal,Vec,Mat,Mat,void*); | |
extern PetscErrorCode IFunctionHeat(TS,PetscReal,Vec,Vec,Vec,void*); | |
extern PetscErrorCode IJacobianHeat(TS,PetscReal,Vec,Vec,PetscReal,Mat,Mat,void*); | |
extern PetscErrorCode Monitor(TS,PetscInt,PetscReal,Vec,void*); | |
extern PetscErrorCode ExactSolution(PetscReal,Vec,AppCtx*); | |
int main(int argc,char **argv) | |
{ | |
AppCtx appctx; /* user-defined application context */ | |
TS ts; /* timestepping context */ | |
Mat A; /* matrix data structure */ | |
Vec u; /* approximate solution vector */ | |
PetscReal time_total_max = 100.0; /* default max total time */ | |
PetscInt time_steps_max = 100; /* default max timesteps */ | |
PetscDraw draw; /* drawing context */ | |
PetscErrorCode ierr; | |
PetscInt steps,m; | |
PetscMPIInt size; | |
PetscReal dt; | |
PetscBool flg,flg_string; | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Initialize program and set problem parameters | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr; | |
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); | |
if (size != 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_WRONG_MPI_SIZE,"This is a uniprocessor example only!"); | |
m = 60; | |
ierr = PetscOptionsGetInt(NULL,NULL,"-m",&m,NULL);CHKERRQ(ierr); | |
ierr = PetscOptionsHasName(NULL,NULL,"-debug",&appctx.debug);CHKERRQ(ierr); | |
flg_string = PETSC_FALSE; | |
ierr = PetscOptionsGetBool(NULL,NULL,"-test_string_viewer",&flg_string,NULL);CHKERRQ(ierr); | |
appctx.m = m; | |
appctx.h = 1.0/(m-1.0); | |
appctx.norm_2 = 0.0; | |
appctx.norm_max = 0.0; | |
ierr = PetscPrintf(PETSC_COMM_SELF,"Solving a linear TS problem on 1 processor\n");CHKERRQ(ierr); | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Create vector data structures | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* | |
Create vector data structures for approximate and exact solutions | |
*/ | |
ierr = VecCreateSeq(PETSC_COMM_SELF,m,&u);CHKERRQ(ierr); | |
ierr = VecDuplicate(u,&appctx.solution);CHKERRQ(ierr); | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Set up displays to show graphs of the solution and error | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
ierr = PetscViewerDrawOpen(PETSC_COMM_SELF,0,"",80,380,400,160,&appctx.viewer1);CHKERRQ(ierr); | |
ierr = PetscViewerDrawGetDraw(appctx.viewer1,0,&draw);CHKERRQ(ierr); | |
ierr = PetscDrawSetDoubleBuffer(draw);CHKERRQ(ierr); | |
ierr = PetscViewerDrawOpen(PETSC_COMM_SELF,0,"",80,0,400,160,&appctx.viewer2);CHKERRQ(ierr); | |
ierr = PetscViewerDrawGetDraw(appctx.viewer2,0,&draw);CHKERRQ(ierr); | |
ierr = PetscDrawSetDoubleBuffer(draw);CHKERRQ(ierr); | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Create timestepping solver context | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
ierr = TSCreate(PETSC_COMM_SELF,&ts);CHKERRQ(ierr); | |
ierr = TSSetProblemType(ts,TS_LINEAR);CHKERRQ(ierr); | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Set optional user-defined monitoring routine | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
if (!flg_string) { | |
ierr = TSMonitorSet(ts,Monitor,&appctx,NULL);CHKERRQ(ierr); | |
} | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Create matrix data structure; set matrix evaluation routine. | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
ierr = MatCreate(PETSC_COMM_SELF,&A);CHKERRQ(ierr); | |
ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m,m);CHKERRQ(ierr); | |
ierr = MatSetFromOptions(A);CHKERRQ(ierr); | |
ierr = MatSetUp(A);CHKERRQ(ierr); | |
flg = PETSC_FALSE; | |
ierr = PetscOptionsGetBool(NULL,NULL,"-use_ifunc",&flg,NULL);CHKERRQ(ierr); | |
if (!flg) { | |
appctx.A = NULL; | |
ierr = PetscOptionsGetBool(NULL,NULL,"-time_dependent_rhs",&flg,NULL);CHKERRQ(ierr); | |
if (flg) { | |
/* | |
For linear problems with a time-dependent f(u,t) in the equation | |
u_t = f(u,t), the user provides the discretized right-hand-side | |
as a time-dependent matrix. | |
*/ | |
ierr = TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,&appctx);CHKERRQ(ierr); | |
ierr = TSSetRHSJacobian(ts,A,A,RHSMatrixHeat,&appctx);CHKERRQ(ierr); | |
} else { | |
/* | |
For linear problems with a time-independent f(u) in the equation | |
u_t = f(u), the user provides the discretized right-hand-side | |
as a matrix only once, and then sets the special Jacobian evaluation | |
routine TSComputeRHSJacobianConstant() which will NOT recompute the Jacobian. | |
*/ | |
ierr = RHSMatrixHeat(ts,0.0,u,A,A,&appctx);CHKERRQ(ierr); | |
ierr = TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,&appctx);CHKERRQ(ierr); | |
ierr = TSSetRHSJacobian(ts,A,A,TSComputeRHSJacobianConstant,&appctx);CHKERRQ(ierr); | |
} | |
} else { | |
Mat J; | |
ierr = RHSMatrixHeat(ts,0.0,u,A,A,&appctx);CHKERRQ(ierr); | |
ierr = MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&J);CHKERRQ(ierr); | |
ierr = TSSetIFunction(ts,NULL,IFunctionHeat,&appctx);CHKERRQ(ierr); | |
ierr = TSSetIJacobian(ts,J,J,IJacobianHeat,&appctx);CHKERRQ(ierr); | |
ierr = MatDestroy(&J);CHKERRQ(ierr); | |
ierr = PetscObjectReference((PetscObject)A);CHKERRQ(ierr); | |
appctx.A = A; | |
appctx.oshift = PETSC_MIN_REAL; | |
} | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Set solution vector and initial timestep | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
dt = appctx.h*appctx.h/2.0; | |
ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr); | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Customize timestepping solver: | |
- Set the solution method to be the Backward Euler method. | |
- Set timestepping duration info | |
Then set runtime options, which can override these defaults. | |
For example, | |
-ts_max_steps <maxsteps> -ts_max_time <maxtime> | |
to override the defaults set by TSSetMaxSteps()/TSSetMaxTime(). | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
ierr = TSSetMaxSteps(ts,time_steps_max);CHKERRQ(ierr); | |
ierr = TSSetMaxTime(ts,time_total_max);CHKERRQ(ierr); | |
ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr); | |
ierr = TSSetFromOptions(ts);CHKERRQ(ierr); | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Solve the problem | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* | |
Evaluate initial conditions | |
*/ | |
ierr = InitialConditions(u,&appctx);CHKERRQ(ierr); | |
ierr = TSSetSaveTrajectory(ts); | |
/* | |
Run the timestepping solver | |
*/ | |
ierr = TSSolve(ts,u);CHKERRQ(ierr); | |
ierr = TSGetStepNumber(ts,&steps);CHKERRQ(ierr); | |
// Now the adjoint! | |
Vec du; | |
ierr = VecDuplicate(u, &du);CHKERRQ(ierr); | |
ierr = VecCopy(u, du);CHKERRQ(ierr); | |
ierr = VecScale(du, 2.0);CHKERRQ(ierr); | |
PetscReal du_norm = 0.0; | |
ierr = VecNorm(du, NORM_2, &du_norm);CHKERRQ(ierr); | |
ierr = PetscPrintf(PETSC_COMM_SELF, "Norm of du before the adjoint solve = %g\n", (double)(du_norm));CHKERRQ(ierr); | |
ierr = TSSetCostGradients(ts, 1, &du, NULL);CHKERRQ(ierr); | |
ierr = TSAdjointStep(ts);CHKERRQ(ierr); | |
ierr = VecNorm(du, NORM_2, &du_norm);CHKERRQ(ierr); | |
ierr = PetscPrintf(PETSC_COMM_SELF, "Norm of du, adjoint step #1 = %g\n", (double)(du_norm));CHKERRQ(ierr); | |
ierr = TSAdjointStep(ts);CHKERRQ(ierr); | |
ierr = VecNorm(du, NORM_2, &du_norm);CHKERRQ(ierr); | |
ierr = PetscPrintf(PETSC_COMM_SELF, "Norm of du, adjoint step #2 = %g\n", (double)(du_norm));CHKERRQ(ierr); | |
// ierr = TSAdjointSolve(ts);CHKERRQ(ierr); | |
// ierr = VecNorm(du, NORM_2, &du_norm);CHKERRQ(ierr); | |
// ierr = PetscPrintf(PETSC_COMM_SELF, "Norm of du, after adjoint solve = %g\n", (double)(du_norm));CHKERRQ(ierr); | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
View timestepping solver info | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
ierr = PetscPrintf(PETSC_COMM_SELF,"avg. error (2 norm) = %g, avg. error (max norm) = %g\n",(double)(appctx.norm_2/steps),(double)(appctx.norm_max/steps));CHKERRQ(ierr); | |
if (!flg_string) { | |
ierr = TSView(ts,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr); | |
} else { | |
PetscViewer stringviewer; | |
char string[512]; | |
const char *outstring; | |
ierr = PetscViewerStringOpen(PETSC_COMM_WORLD,string,sizeof(string),&stringviewer);CHKERRQ(ierr); | |
ierr = TSView(ts,stringviewer);CHKERRQ(ierr); | |
ierr = PetscViewerStringGetStringRead(stringviewer,&outstring,NULL);CHKERRQ(ierr); | |
if ((char*)outstring != (char*)string) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_PLIB,"String returned from viewer does not equal original string"); | |
ierr = PetscPrintf(PETSC_COMM_WORLD,"Output from string viewer:%s\n",outstring);CHKERRQ(ierr); | |
ierr = PetscViewerDestroy(&stringviewer);CHKERRQ(ierr); | |
} | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Free work space. All PETSc objects should be destroyed when they | |
are no longer needed. | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
ierr = TSDestroy(&ts);CHKERRQ(ierr); | |
ierr = MatDestroy(&A);CHKERRQ(ierr); | |
ierr = VecDestroy(&u);CHKERRQ(ierr); | |
ierr = PetscViewerDestroy(&appctx.viewer1);CHKERRQ(ierr); | |
ierr = PetscViewerDestroy(&appctx.viewer2);CHKERRQ(ierr); | |
ierr = VecDestroy(&appctx.solution);CHKERRQ(ierr); | |
ierr = MatDestroy(&appctx.A);CHKERRQ(ierr); | |
/* | |
Always call PetscFinalize() before exiting a program. This routine | |
- finalizes the PETSc libraries as well as MPI | |
- provides summary and diagnostic information if certain runtime | |
options are chosen (e.g., -log_view). | |
*/ | |
ierr = PetscFinalize(); | |
return ierr; | |
} | |
/* --------------------------------------------------------------------- */ | |
/* | |
InitialConditions - Computes the solution at the initial time. | |
Input Parameter: | |
u - uninitialized solution vector (global) | |
appctx - user-defined application context | |
Output Parameter: | |
u - vector with solution at initial time (global) | |
*/ | |
PetscErrorCode InitialConditions(Vec u,AppCtx *appctx) | |
{ | |
PetscScalar *u_localptr,h = appctx->h; | |
PetscErrorCode ierr; | |
PetscInt i; | |
/* | |
Get a pointer to vector data. | |
- For default PETSc vectors, VecGetArray() returns a pointer to | |
the data array. Otherwise, the routine is implementation dependent. | |
- You MUST call VecRestoreArray() when you no longer need access to | |
the array. | |
- Note that the Fortran interface to VecGetArray() differs from the | |
C version. See the users manual for details. | |
*/ | |
ierr = VecGetArray(u,&u_localptr);CHKERRQ(ierr); | |
/* | |
We initialize the solution array by simply writing the solution | |
directly into the array locations. Alternatively, we could use | |
VecSetValues() or VecSetValuesLocal(). | |
*/ | |
for (i=0; i<appctx->m; i++) u_localptr[i] = PetscSinScalar(PETSC_PI*i*6.*h) + 3.*PetscSinScalar(PETSC_PI*i*2.*h); | |
/* | |
Restore vector | |
*/ | |
ierr = VecRestoreArray(u,&u_localptr);CHKERRQ(ierr); | |
/* | |
Print debugging information if desired | |
*/ | |
if (appctx->debug) { | |
ierr = PetscPrintf(PETSC_COMM_WORLD,"Initial guess vector\n");CHKERRQ(ierr); | |
ierr = VecView(u,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr); | |
} | |
return 0; | |
} | |
/* --------------------------------------------------------------------- */ | |
/* | |
ExactSolution - Computes the exact solution at a given time. | |
Input Parameters: | |
t - current time | |
solution - vector in which exact solution will be computed | |
appctx - user-defined application context | |
Output Parameter: | |
solution - vector with the newly computed exact solution | |
*/ | |
PetscErrorCode ExactSolution(PetscReal t,Vec solution,AppCtx *appctx) | |
{ | |
PetscScalar *s_localptr,h = appctx->h,ex1,ex2,sc1,sc2,tc = t; | |
PetscErrorCode ierr; | |
PetscInt i; | |
/* | |
Get a pointer to vector data. | |
*/ | |
ierr = VecGetArray(solution,&s_localptr);CHKERRQ(ierr); | |
/* | |
Simply write the solution directly into the array locations. | |
Alternatively, we culd use VecSetValues() or VecSetValuesLocal(). | |
*/ | |
ex1 = PetscExpScalar(-36.*PETSC_PI*PETSC_PI*tc); | |
ex2 = PetscExpScalar(-4.*PETSC_PI*PETSC_PI*tc); | |
sc1 = PETSC_PI*6.*h; sc2 = PETSC_PI*2.*h; | |
for (i=0; i<appctx->m; i++) s_localptr[i] = PetscSinScalar(sc1*(PetscReal)i)*ex1 + 3.*PetscSinScalar(sc2*(PetscReal)i)*ex2; | |
/* | |
Restore vector | |
*/ | |
ierr = VecRestoreArray(solution,&s_localptr);CHKERRQ(ierr); | |
return 0; | |
} | |
/* --------------------------------------------------------------------- */ | |
/* | |
Monitor - User-provided routine to monitor the solution computed at | |
each timestep. This example plots the solution and computes the | |
error in two different norms. | |
This example also demonstrates changing the timestep via TSSetTimeStep(). | |
Input Parameters: | |
ts - the timestep context | |
step - the count of the current step (with 0 meaning the | |
initial condition) | |
time - the current time | |
u - the solution at this timestep | |
ctx - the user-provided context for this monitoring routine. | |
In this case we use the application context which contains | |
information about the problem size, workspace and the exact | |
solution. | |
*/ | |
PetscErrorCode Monitor(TS ts,PetscInt step,PetscReal time,Vec u,void *ctx) | |
{ | |
AppCtx *appctx = (AppCtx*) ctx; /* user-defined application context */ | |
PetscErrorCode ierr; | |
PetscReal norm_2,norm_max,dt,dttol; | |
/* | |
View a graph of the current iterate | |
*/ | |
ierr = VecView(u,appctx->viewer2);CHKERRQ(ierr); | |
/* | |
Compute the exact solution | |
*/ | |
ierr = ExactSolution(time,appctx->solution,appctx);CHKERRQ(ierr); | |
/* | |
Print debugging information if desired | |
*/ | |
if (appctx->debug) { | |
ierr = PetscPrintf(PETSC_COMM_SELF,"Computed solution vector\n");CHKERRQ(ierr); | |
ierr = VecView(u,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr); | |
ierr = PetscPrintf(PETSC_COMM_SELF,"Exact solution vector\n");CHKERRQ(ierr); | |
ierr = VecView(appctx->solution,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr); | |
} | |
/* | |
Compute the 2-norm and max-norm of the error | |
*/ | |
ierr = VecAXPY(appctx->solution,-1.0,u);CHKERRQ(ierr); | |
ierr = VecNorm(appctx->solution,NORM_2,&norm_2);CHKERRQ(ierr); | |
norm_2 = PetscSqrtReal(appctx->h)*norm_2; | |
ierr = VecNorm(appctx->solution,NORM_MAX,&norm_max);CHKERRQ(ierr); | |
if (norm_2 < 1e-14) norm_2 = 0; | |
if (norm_max < 1e-14) norm_max = 0; | |
ierr = TSGetTimeStep(ts,&dt);CHKERRQ(ierr); | |
ierr = PetscPrintf(PETSC_COMM_WORLD,"Timestep %3D: step size = %g, time = %g, 2-norm error = %g, max norm error = %g\n",step,(double)dt,(double)time,(double)norm_2,(double)norm_max);CHKERRQ(ierr); | |
appctx->norm_2 += norm_2; | |
appctx->norm_max += norm_max; | |
dttol = .0001; | |
ierr = PetscOptionsGetReal(NULL,NULL,"-dttol",&dttol,NULL);CHKERRQ(ierr); | |
if (dt < dttol) { | |
dt *= .999; | |
ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr); | |
} | |
/* | |
View a graph of the error | |
*/ | |
ierr = VecView(appctx->solution,appctx->viewer1);CHKERRQ(ierr); | |
/* | |
Print debugging information if desired | |
*/ | |
if (appctx->debug) { | |
ierr = PetscPrintf(PETSC_COMM_SELF,"Error vector\n");CHKERRQ(ierr); | |
ierr = VecView(appctx->solution,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr); | |
} | |
return 0; | |
} | |
/* --------------------------------------------------------------------- */ | |
/* | |
RHSMatrixHeat - User-provided routine to compute the right-hand-side | |
matrix for the heat equation. | |
Input Parameters: | |
ts - the TS context | |
t - current time | |
global_in - global input vector | |
dummy - optional user-defined context, as set by TSetRHSJacobian() | |
Output Parameters: | |
AA - Jacobian matrix | |
BB - optionally different preconditioning matrix | |
str - flag indicating matrix structure | |
Notes: | |
Recall that MatSetValues() uses 0-based row and column numbers | |
in Fortran as well as in C. | |
*/ | |
PetscErrorCode RHSMatrixHeat(TS ts,PetscReal t,Vec X,Mat AA,Mat BB,void *ctx) | |
{ | |
Mat A = AA; /* Jacobian matrix */ | |
AppCtx *appctx = (AppCtx*)ctx; /* user-defined application context */ | |
PetscInt mstart = 0; | |
PetscInt mend = appctx->m; | |
PetscErrorCode ierr; | |
PetscInt i,idx[3]; | |
PetscScalar v[3],stwo = -2./(appctx->h*appctx->h),sone = -.5*stwo; | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Compute entries for the locally owned part of the matrix | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* | |
Set matrix rows corresponding to boundary data | |
*/ | |
mstart = 0; | |
v[0] = 1.0; | |
ierr = MatSetValues(A,1,&mstart,1,&mstart,v,INSERT_VALUES);CHKERRQ(ierr); | |
mstart++; | |
mend--; | |
v[0] = 1.0; | |
ierr = MatSetValues(A,1,&mend,1,&mend,v,INSERT_VALUES);CHKERRQ(ierr); | |
/* | |
Set matrix rows corresponding to interior data. We construct the | |
matrix one row at a time. | |
*/ | |
v[0] = sone; v[1] = stwo; v[2] = sone; | |
for (i=mstart; i<mend; i++) { | |
idx[0] = i-1; idx[1] = i; idx[2] = i+1; | |
ierr = MatSetValues(A,1,&i,3,idx,v,INSERT_VALUES);CHKERRQ(ierr); | |
} | |
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Complete the matrix assembly process and set some options | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ | |
/* | |
Assemble matrix, using the 2-step process: | |
MatAssemblyBegin(), MatAssemblyEnd() | |
Computations can be done while messages are in transition | |
by placing code between these two statements. | |
*/ | |
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); | |
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); | |
/* | |
Set and option to indicate that we will never add a new nonzero location | |
to the matrix. If we do, it will generate an error. | |
*/ | |
ierr = MatSetOption(A,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);CHKERRQ(ierr); | |
return 0; | |
} | |
PetscErrorCode IFunctionHeat(TS ts,PetscReal t,Vec X,Vec Xdot,Vec r,void *ctx) | |
{ | |
AppCtx *appctx = (AppCtx*)ctx; /* user-defined application context */ | |
PetscErrorCode ierr; | |
ierr = MatMult(appctx->A,X,r);CHKERRQ(ierr); | |
ierr = VecAYPX(r,-1.0,Xdot);CHKERRQ(ierr); | |
return 0; | |
} | |
PetscErrorCode IJacobianHeat(TS ts,PetscReal t,Vec X,Vec Xdot,PetscReal s,Mat A,Mat B,void *ctx) | |
{ | |
AppCtx *appctx = (AppCtx*)ctx; /* user-defined application context */ | |
PetscErrorCode ierr; | |
if (appctx->oshift == s) return 0; | |
ierr = MatCopy(appctx->A,A,SAME_NONZERO_PATTERN);CHKERRQ(ierr); | |
ierr = MatScale(A,-1);CHKERRQ(ierr); | |
ierr = MatShift(A,s);CHKERRQ(ierr); | |
ierr = MatCopy(A,B,SAME_NONZERO_PATTERN);CHKERRQ(ierr); | |
appctx->oshift = s; | |
return 0; | |
} | |
/*TEST | |
test: | |
args: -nox -ts_type ssp -ts_dt 0.0005 | |
test: | |
suffix: 2 | |
args: -nox -ts_type ssp -ts_dt 0.0005 -time_dependent_rhs 1 | |
test: | |
suffix: 3 | |
args: -nox -ts_type rosw -ts_max_steps 3 -ksp_converged_reason | |
filter: sed "s/ATOL/RTOL/g" | |
requires: !single | |
test: | |
suffix: 4 | |
args: -nox -ts_type beuler -ts_max_steps 3 -ksp_converged_reason | |
filter: sed "s/ATOL/RTOL/g" | |
test: | |
suffix: 5 | |
args: -nox -ts_type beuler -ts_max_steps 3 -ksp_converged_reason -time_dependent_rhs | |
filter: sed "s/ATOL/RTOL/g" | |
test: | |
requires: !single | |
suffix: pod_guess | |
args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type pod -pc_type none -ksp_converged_reason | |
test: | |
requires: !single | |
suffix: pod_guess_Ainner | |
args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type pod -ksp_guess_pod_Ainner -pc_type none -ksp_converged_reason | |
test: | |
requires: !single | |
suffix: fischer_guess | |
args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type fischer -pc_type none -ksp_converged_reason | |
test: | |
requires: !single | |
suffix: fischer_guess_2 | |
args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type fischer -ksp_guess_fischer_model 2,10 -pc_type none -ksp_converged_reason | |
test: | |
requires: !single | |
suffix: stringview | |
args: -nox -ts_type rosw -test_string_viewer | |
test: | |
requires: !single | |
suffix: stringview_euler | |
args: -nox -ts_type euler -test_string_viewer | |
TEST*/ |
Alright, in the code theta == 1.0 is treated separately:
Lines 430-433 https://www.mcs.anl.gov/petsc/petsc-current/src/ts/impls/implicit/theta/theta.c.html#TSAdjointStep_Theta
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Added those lines https://gist.github.com/IvanYashchuk/f4da070d8401e039ee43ad105331a209#file-ex3-c-L245-L266 to the original example.
Adjoint calculation is failing when run with
./ex3 -use_ifunc -ts_monitor -ts_adjoint_monitor -ts_type theta -ts_theta_theta 1.0
For other theta values it works (from 0.01 to 0.99999).