Created
March 25, 2016 15:23
-
-
Save Ivoah/7fc4173940eca415e352 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import turtle, sys, math | |
def dragon_curve(t, n, l): | |
sqrt2over2 = math.sqrt(2)/2 | |
i = [1 for i in range(n)] | |
def r(n, l): | |
if n == 0: | |
t.forward(l) | |
else: | |
_ = 1 | |
if i[n-1]%2 == 0: _ = -1 | |
t.left(_*45) | |
r(n - 1, l*sqrt2over2) | |
t.right(_*90) | |
r(n - 1, l*sqrt2over2) | |
t.left(_*45) | |
i[n-1] += 1 | |
r(n, l) | |
def koch_curve(t, n, l): | |
def r(n, l): | |
if n == 0: | |
t.forward(l) | |
else: | |
r(n - 1, l/3) | |
t.left(60) | |
r(n - 1, l/3) | |
t.right(120) | |
r(n - 1, l/3) | |
t.left(60) | |
r(n - 1, l/3) | |
r(n, l) | |
def sierp_tri(t, n, l): | |
i = [0 if i%2 == 0 else 1 for i in range(n)] | |
def r(n, l): | |
if n == 0: | |
t.forward(l) | |
else: | |
_ = 1 | |
if i[n-1]%2 == 0: _ = -1 | |
t.left(_*60) | |
r(n - 1, l/2) | |
t.right(_*60) | |
r(n - 1, l/2) | |
t.right(_*60) | |
r(n - 1, l/2) | |
t.left(_*60) | |
i[n-1] += 1 | |
r(n, l) | |
t = turtle.Turtle() | |
t.speed(100000) | |
n = int(sys.argv[1]) | |
#for i in range(1, int(n + 1)): | |
# t.home() | |
# t.color(1 - i/n, 1 - i/n, 1 - i/n) | |
t.penup() | |
t.setx(-250/2) | |
t.pendown() | |
dragon_curve(t, n, 250) | |
turtle.done() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment