Created
July 5, 2024 20:55
-
-
Save Ivorforce/97c19daa2bd4075af5179d3bf96ebebd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import PIL.Image | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from einops import rearrange, reduce, repeat | |
import cv2 | |
############################################################################################# | |
ascii = PIL.Image.open('../resources/8s0Sj.gif') | |
ascii = np.asarray(ascii) * 16 | |
ascii = rearrange(ascii, '(w1 w2) (h1 h2) -> (w1 h1) w2 h2', w2=16, h2=16) | |
plt.imshow(ascii[64 + 16 * 2 + 1]) | |
ascii_pad = np.pad(ascii[64 + 16 * 2 + 1], ((16, 16), (16, 16)), 'constant', constant_values=0) | |
coords = np.mgrid[:48, :48].transpose((1, 2, 0)).reshape((-1, 2)) | |
ascii_flat = ascii_pad.reshape(-1) | |
coords = coords[ascii_flat > 0] | |
x_min = np.min(coords[:, 0]) | |
x_max = np.max(coords[:, 0]) + 1 | |
y_min = np.min(coords[:, 1]) | |
y_max = np.max(coords[:, 1]) + 1 | |
char_width = x_max - x_min | |
char_height = y_max - y_min | |
ascii = [] | |
for shift_x in range(x_min - (16 - char_width), x_min): | |
for shift_y in range(y_min - (16 - char_height), y_min): | |
ascii.append(ascii_pad[shift_x:shift_x + 16, shift_y:shift_y + 16]) | |
ascii = np.array(ascii) | |
############################################################################################# | |
capture = cv2.VideoCapture("/Users/lukas/Downloads/bad_apple.mp4") | |
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = capture.get(cv2.CAP_PROP_FPS) | |
print(width, height, fps) | |
out = cv2.VideoWriter() | |
if not out.open('output.mov', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height), False): | |
raise IOError() | |
try: | |
while capture.isOpened(): | |
ret, img_src = capture.read() | |
if not ret: | |
break | |
img = img_src | |
# Resolution fix | |
img = img[:height // 16 * 16, :width // 16 * 16] | |
img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + img[:, :, 2] * 0.114 | |
img = rearrange(img, '(w1 w2) (h1 h2) -> (w1 h1) w2 h2', w2=16, h2=16) | |
diff = np.mean((img[:, None] - ascii[None, :]) ** 2, axis=(-2, -1)) | |
idxs = np.argmin(diff, axis=-1) | |
img_ascii = np.empty_like(img) | |
for i in range(img.shape[0]): | |
img_ascii[i] = ascii[idxs[i]] | |
img_ascii = rearrange(img_ascii, '(w1 h1) w2 h2 -> (w1 w2) (h1 h2)', h1=width // 16) | |
if img_ascii.shape[-2] < height or img_ascii.shape[-1] < width: | |
img_ascii = np.pad(img_ascii, ((0, height - img_ascii.shape[-2]), (0, width - img_ascii.shape[-1])), 'constant', constant_values=0) | |
out.write(img_ascii.astype(np.uint8)) | |
finally: | |
capture.release() | |
out.release() | |
cv2.destroyAllWindows() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment