Last active
July 1, 2021 04:27
-
-
Save J3698/1612863d591815789a20e5defcf0b812 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def train_epoch_style_loss(args, encoder, decoder, dataloader, val_dataloader, | |
optimizer, epoch_num, writer, run, device): | |
encoder.eval() | |
decoder.train() | |
total_loss = 0 | |
num_batches = calc_num_batches(dataloader, args) | |
progress_bar = tqdm.tqdm(enumerate(dataloader), total = num_batches, dynamic_ncols = True) | |
for i, (content_image, style_image) in progress_bar: | |
# mvoe to gpu | |
content_image = content_image.to(device) | |
style_image = style_image.to(device) | |
# training | |
optimizer.zero_grad() | |
loss, stylized = get_style_transfer_loss(encoder, decoder, content_image, style_image, args.lambda_content, args.lambda_style) | |
loss.backward() | |
total_loss += loss.item() | |
optimizer.step() | |
# logging | |
iteration = epoch_num * num_batches + i | |
write_to_tensorboard(iteration, args, encoder, decoder, val_dataloader, writer, device) | |
progress_bar.set_postfix({'epoch': f"{epoch_num}", 'loss': f"{total_loss / (i + 1):.2f}"}) | |
writer.add_scalar('Loss/train', total_loss, epoch_num) | |
return total_loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment