Last active
June 27, 2021 18:32
-
-
Save J3698/ae9779e0fd87297b09e144fb7220c4d4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Decoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
features = torchvision.models.vgg19(pretrained=True, progress=True).features[20:None:-1] | |
for i, layer in enumerate(features): | |
if isinstance(layer, nn.MaxPool2d): | |
features[i] = nn.Upsample(scale_factor = (2, 2), mode = 'nearest') | |
elif isinstance(layer, nn.Conv2d): | |
conv2d = nn.Conv2d(layer.out_channels, layer.in_channels, \ | |
kernel_size = layer.kernel_size, stride = layer.stride, \ | |
padding = layer.padding, padding_mode = 'reflect') | |
with torch.no_grad(): | |
torch.nn.init.kaiming_normal_(conv2d.weight, nonlinearity='relu') | |
torch.nn.init.zeros_(conv2d.bias) | |
features[i] = conv2d | |
elif isinstance(layer, nn.ReLU): | |
layer.inplace = False | |
self.features = features | |
def forward(self, x): | |
out = self.features(x) | |
return out |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment