Skip to content

Instantly share code, notes, and snippets.

@JBed
Last active April 7, 2022 19:29
Show Gist options
  • Save JBed/c2fb3ce8ed299f197eff to your computer and use it in GitHub Desktop.
Save JBed/c2fb3ce8ed299f197eff to your computer and use it in GitHub Desktop.
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
#AlexNet with batch normalization in Keras
#input image is 224x224
model = Sequential()
model.add(Convolution2D(64, 3, 11, 11, border_mode='full'))
model.add(BatchNormalization((64,226,226)))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(3, 3)))
model.add(Convolution2D(128, 64, 7, 7, border_mode='full'))
model.add(BatchNormalization((128,115,115)))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(3, 3)))
model.add(Convolution2D(192, 128, 3, 3, border_mode='full'))
model.add(BatchNormalization((128,112,112)))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(3, 3)))
model.add(Convolution2D(256, 192, 3, 3, border_mode='full'))
model.add(BatchNormalization((128,108,108)))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(3, 3)))
model.add(Flatten())
model.add(Dense(12*12*256, 4096, init='normal'))
model.add(BatchNormalization(4096))
model.add(Activation('relu'))
model.add(Dense(4096, 4096, init='normal'))
model.add(BatchNormalization(4096))
model.add(Activation('relu'))
model.add(Dense(4096, 1000, init='normal'))
model.add(BatchNormalization(1000))
model.add(Activation('softmax'))
@AdityaSoni19031997
Copy link

why your Convolution2D have four customized parameters? currently version's keras only need 3 params..??

@webcsm
Copy link

webcsm commented Aug 30, 2017

You can find 2-stream AlexNet here: http://dandxy89.github.io/ImageModels/alexnet/

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment