Last active
February 17, 2025 20:24
-
-
Save JC3/46c740c2a8b232408ebad0163253e51c to your computer and use it in GitHub Desktop.
example data generator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import numpy as np | |
BCD_LENGTH = 100 | |
BCD_SINE_CENTER = 300 | |
A_CURVE = 1.5 | |
B_SINE_AMP = 25 | |
C_SINE_AMP = 50 | |
D_SINE_AMP = 100 | |
E_LENGTH = 100 | |
SIGNAL_B_DELAY = 10 | |
STEP_SIZE = 3 | |
def makestep (data, step): | |
stepped = [] | |
value = None | |
for k in range(len(data)): | |
if k % step == 0: | |
value = data[k] | |
stepped.append(value) | |
return stepped | |
# --- generate data | |
partb = [] | |
partc = [] | |
partd = [] | |
for k in range(BCD_LENGTH * 5 // 4): | |
theta = 2.0 * math.pi * k / BCD_LENGTH | |
if k < BCD_LENGTH: | |
partb.append(math.sin(theta) * B_SINE_AMP + BCD_SINE_CENTER) | |
partc.append(math.sin(theta) * C_SINE_AMP + BCD_SINE_CENTER) | |
partd.append(math.sin(theta) * D_SINE_AMP + BCD_SINE_CENTER) | |
parte = [] | |
for k in range(E_LENGTH): | |
parte.append(D_SINE_AMP + BCD_SINE_CENTER) | |
parta = [] | |
max_value = BCD_SINE_CENTER + max((B_SINE_AMP, C_SINE_AMP, D_SINE_AMP)) | |
mid_theta_step = 2.0 * math.pi * 1 / BCD_LENGTH | |
for k in range(1, 1000000): | |
parta.append(max(0, BCD_SINE_CENTER - math.pow(B_SINE_AMP * mid_theta_step * k, A_CURVE))) | |
complete = parta + partb + partc + partd + parte | |
mean = sum(complete) / len(complete) | |
if mean <= max_value / 2: # keep adding until the mean is ~half the value range | |
break | |
parta = list(reversed(parta)) | |
complete = parta + partb + partc + partd + parte | |
complete = makestep(complete, STEP_SIZE) | |
# --- compute cross-correlation | |
signal_a = np.array(complete) | |
signal_b = np.array(partc) | |
# can test mean-centering like this | |
#signal_a = signal_a - np.mean(signal_a) | |
#signal_b = signal_b - np.mean(signal_b) | |
# can test differentiation like this | |
#signal_a = np.diff(signal_a, prepend=signal_a[0]) | |
#signal_b = np.diff(signal_b, prepend=signal_b[0]) | |
cc = np.correlate(signal_a, signal_b, mode="valid") | |
# --- write files | |
print("signal_a.csv...") | |
with open("signal_a.csv", "wt") as f: | |
f.write("x,y\n") | |
for x in range(len(signal_a)): | |
f.write(f"{x},{signal_a[x]}\n") | |
print("signal_b.csv...") | |
partc_start = len(parta) + len(partb) | |
with open("signal_b.csv", "wt") as f: | |
f.write("x,y\n") | |
for x in range(len(signal_b)): | |
f.write(f"{x+partc_start+SIGNAL_B_DELAY},{signal_b[x]}\n") | |
print("signal_cc.csv...") | |
with open("signal_cc.csv", "wt") as f: | |
f.write("offset,c\n") | |
start_offset = -(partc_start + SIGNAL_B_DELAY) | |
for o in range(len(cc)): | |
f.write(f"{o+start_offset},{cc[o]}\n") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://stats.stackexchange.com/questions/661469/using-cross-correlation-to-find-signal-delay