Created
January 6, 2016 21:16
-
-
Save JackSullivan/5263bc6284c4dbe79951 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" An rbm implementation for TensorFlow, based closely on the one in Theano """ | |
import tensorflow as tf | |
import math | |
def sample_prob(probs): | |
"""Takes a tensor of probabilities (as from a sigmoidal activation) | |
and samples from all the distributions""" | |
return tf.nn.relu( | |
tf.sign( | |
probs - tf.random_uniform(probs.get_shape()))) | |
class RBM(object): | |
""" represents a sigmoidal rbm """ | |
def __init__(self, name, input_size, output_size): | |
with tf.name_scope("rbm_" + name): | |
self.weights = tf.Variable( | |
tf.truncated_normal([input_size, output_size], | |
stddev=1.0 / math.sqrt(float(input_size))), name="weights") | |
self.v_bias = tf.Variable(tf.zeros([input_size]), name="v_bias") | |
self.h_bias = tf.Variable(tf.zeros([output_size]), name="h_bias") | |
def propup(self, visible): | |
""" P(h|v) """ | |
return tf.nn.sigmoid(tf.matmul(visible, self.weights) + self.h_bias) | |
def propdown(self, hidden): | |
""" P(v|h) """ | |
return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(self.weights)) + self.v_bias) | |
def sample_h_given_v(self, v_sample): | |
""" Generate a sample from the hidden layer """ | |
return sample_prob(self.propup(v_sample)) | |
def sample_v_given_h(self, h_sample): | |
""" Generate a sample from the visible layer """ | |
return sample_prob(self.propdown(h_sample)) | |
def gibbs_hvh(self, h0_sample): | |
""" A gibbs step starting from the hidden layer """ | |
v_sample = self.sample_v_given_h(h0_sample) | |
h_sample = self.sample_h_given_v(v_sample) | |
return [v_sample, h_sample] | |
def gibbs_vhv(self, v0_sample): | |
""" A gibbs step starting from the visible layer """ | |
h_sample = self.sample_h_given_v(v0_sample) | |
v_sample = self.sample_v_given_h(h_sample) | |
return [h_sample, v_sample] | |
def cd1(self, visibles, learning_rate=0.1): | |
" One step of contrastive divergence, with Rao-Blackwellization " | |
h_start = self.propup(visibles) | |
v_end = self.propdown(h_start) | |
h_end = self.propup(v_end) | |
w_positive_grad = tf.matmul(tf.transpose(visibles), h_start) | |
w_negative_grad = tf.matmul(tf.transpose(v_end), h_end) | |
update_w = self.weights.assign_add(learning_rate * (w_positive_grad - w_negative_grad)) | |
update_vb = self.v_bias.assign_add(learning_rate * tf.reduce_mean(visibles - v_end, 0)) | |
update_hb = self.h_bias.assign_add(learning_rate * tf.reduce_mean(h_start - h_end, 0)) | |
return [update_w, update_vb, update_hb] | |
def reconstruction_error(self, dataset): | |
""" The reconstruction cost for the whole dataset """ | |
err = tf.stop_gradient(dataset - self.gibbs_vhv(dataset)[1]) | |
return tf.reduce_sum(err * err) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
May i ask how to execute this code with tensorflow workflow?