Created
July 14, 2020 20:23
-
-
Save JacopoMangiavacchi/500e4d328231263efd1b425483264164 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
private func readDataSet(fileName: String, updateStatus: @escaping (Int) -> Void) -> ([Float], [Float]) { //}(MLCTensor, MLCTensor) { | |
guard let filePath = Bundle.main.path(forResource: fileName, ofType: "csv") else { | |
fatalError("CSV file not found") | |
} | |
let serialQueue = DispatchQueue(label: "MNIST.serial.queue.\(fileName)") | |
var count = 0 | |
var X = [Float]() | |
var Y = [Float]() | |
let iterations = 20 | |
var iteration = 0 | |
var iterationList = Array<Array<String>>(repeating: Array<String>(), count: iterations) | |
getFileLine(filePath: filePath) { line in | |
iterationList[iteration].append(line) | |
iteration = (iteration + 1) % iterations | |
} | |
DispatchQueue.concurrentPerform(iterations: iterations) { iteration in | |
for line in iterationList[iteration] { | |
let sample = line.split(separator: ",").compactMap({Int($0)}) | |
serialQueue.sync { | |
Y.append(contentsOf: oneHotEncoding(sample[0])) | |
X.append(contentsOf: sample[1...self.imageSize].map{Float($0) / Float(255.0)}) | |
count += 1 | |
updateStatus(count) | |
} | |
} | |
} | |
return (X, Y) | |
} | |
public func asyncPrepareData() { | |
trainingBatchCount = 0 | |
testBatchCount = 0 | |
dataPreparing = true | |
var trainPrepared = false | |
var testPrepared = false | |
concurrentQueue.async { | |
let (X, Y) = self.readDataSet(fileName: "mnist_train") { count in | |
DispatchQueue.main.async { | |
self.trainingBatchCount = count | |
} | |
} | |
DispatchQueue.main.async { | |
self.trainingBatchCount = X.count / self.imageSize | |
self.trainingDataX = X | |
self.trainingDataY = Y | |
trainPrepared = true | |
if testPrepared { | |
self.dataPreparing = false | |
} | |
} | |
} | |
concurrentQueue.async { | |
let (X, Y) = self.readDataSet(fileName: "mnist_test") { count in | |
DispatchQueue.main.async { | |
self.testBatchCount = count | |
} | |
} | |
DispatchQueue.main.async { | |
self.testBatchCount = X.count / self.imageSize | |
self.testDataX = X | |
self.testDataY = Y | |
testPrepared = true | |
if trainPrepared { | |
self.dataPreparing = false | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment