-
-
Save JacopoMangiavacchi/99bb1a4eb0de69d4d861b7bf752f0ed4 to your computer and use it in GitHub Desktop.
PyTorch implementation of VGG perceptual loss
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torchvision | |
class VGGPerceptualLoss(torch.nn.Module): | |
def __init__(self, resize=True): | |
super(VGGPerceptualLoss, self).__init__() | |
blocks = [] | |
blocks.append(torchvision.models.vgg16(pretrained=True).features[:4].eval()) | |
blocks.append(torchvision.models.vgg16(pretrained=True).features[4:9].eval()) | |
blocks.append(torchvision.models.vgg16(pretrained=True).features[9:16].eval()) | |
blocks.append(torchvision.models.vgg16(pretrained=True).features[16:23].eval()) | |
for bl in blocks: | |
for p in bl.parameters(): | |
p.requires_grad = False | |
self.blocks = torch.nn.ModuleList(blocks) | |
self.transform = torch.nn.functional.interpolate | |
self.resize = resize | |
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) | |
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) | |
def forward(self, input, target, feature_layers_weight=[1, 1, 1, 1], style_layers_weight=[1, 1, 1, 1]): | |
if input.shape[1] != 3: | |
input = input.repeat(1, 3, 1, 1) | |
target = target.repeat(1, 3, 1, 1) | |
input = (input-self.mean) / self.std | |
target = (target-self.mean) / self.std | |
if self.resize: | |
input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False) | |
target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False) | |
loss = 0.0 | |
x = input | |
y = target | |
for i, block in enumerate(self.blocks): | |
x = block(x) | |
y = block(y) | |
if feature_layers_weight[i] > 0: | |
feature_weight = feature_layers_weight[i] | |
loss += feature_weight * torch.nn.functional.l1_loss(x, y) | |
if style_layers_weight[i] > 0: | |
act_x = x.reshape(x.shape[0], x.shape[1], -1) | |
act_y = y.reshape(y.shape[0], y.shape[1], -1) | |
gram_x = act_x @ act_x.permute(0, 2, 1) | |
gram_y = act_y @ act_y.permute(0, 2, 1) | |
style_weight = style_layers_weight[i] | |
loss += style_weight * torch.nn.functional.l1_loss(gram_x, gram_y) | |
return loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment