Last active
July 14, 2020 20:52
-
-
Save JacopoMangiavacchi/9d0407b045a56aa5d9f804f238653ab1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
private func initializeTensors() { | |
device = MLCDevice(type: .cpu)! | |
inputTensor = MLCTensor(descriptor: MLCTensorDescriptor(shape: [batchSize, imageSize, 1, 1], dataType: .float32)!) | |
dense1WeightsTensor = MLCTensor(descriptor: MLCTensorDescriptor(shape: [1, imageSize*dense1LayerOutputSize, 1, 1], dataType: .float32)!, | |
randomInitializerType: .glorotUniform) | |
dense1BiasesTensor = MLCTensor(descriptor: MLCTensorDescriptor(shape: [1, dense1LayerOutputSize, 1, 1], dataType: .float32)!, | |
randomInitializerType: .glorotUniform) | |
dense2WeightsTensor = MLCTensor(descriptor: MLCTensorDescriptor(shape: [1, dense1LayerOutputSize*numberOfClasses, 1, 1], dataType: .float32)!, | |
randomInitializerType: .glorotUniform) | |
dense2BiasesTensor = MLCTensor(descriptor: MLCTensorDescriptor(shape: [1, numberOfClasses, 1, 1], dataType: .float32)!, | |
randomInitializerType: .glorotUniform) | |
lossLabelTensor = MLCTensor(descriptor: MLCTensorDescriptor(shape: [batchSize, numberOfClasses], dataType: .float32)!) | |
} | |
private func buildGraph() { | |
graph = MLCGraph() | |
dense1 = graph.node(with: MLCFullyConnectedLayer(weights: dense1WeightsTensor, | |
biases: dense1BiasesTensor, | |
descriptor: MLCConvolutionDescriptor(kernelSizes: (height: imageSize, width: dense1LayerOutputSize), | |
inputFeatureChannelCount: imageSize, | |
outputFeatureChannelCount: dense1LayerOutputSize))!, | |
sources: [inputTensor]) | |
relu1 = graph.node(with: MLCActivationLayer(descriptor: MLCActivationDescriptor(type: MLCActivationType.relu)!), | |
source: dense1!) | |
dense2 = graph.node(with: MLCFullyConnectedLayer(weights: dense2WeightsTensor, | |
biases: dense2BiasesTensor, | |
descriptor: MLCConvolutionDescriptor(kernelSizes: (height: dense1LayerOutputSize, width: numberOfClasses), | |
inputFeatureChannelCount: dense1LayerOutputSize, | |
outputFeatureChannelCount: numberOfClasses))!, | |
sources: [relu1!]) | |
outputSoftmax = graph.node(with: MLCSoftmaxLayer(operation: .softmax), | |
source: dense2!) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment