Created
September 25, 2019 13:47
-
-
Save Jargon4072/e1ffdb272dbef7aaa14e4314ba905828 to your computer and use it in GitHub Desktop.
Yolov3_medium_2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_labels(labels_path): | |
# load the COCO class labels our YOLO model was trained on | |
#labelsPath = os.path.sep.join([yolo_path, "yolo_v3/coco.names"]) | |
lpath=os.path.sep.join([yolo_path, labels_path]) | |
LABELS = open(lpath).read().strip().split("\n") | |
return LABELS | |
def get_colors(LABELS): | |
# initialize a list of colors to represent each possible class label | |
np.random.seed(42) | |
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),dtype="uint8") | |
return COLORS | |
def get_weights(weights_path): | |
# derive the paths to the YOLO weights and model configuration | |
weightsPath = os.path.sep.join([yolo_path, weights_path]) | |
return weightsPath | |
def get_config(config_path): | |
configPath = os.path.sep.join([yolo_path, config_path]) | |
return configPath | |
def load_model(configpath,weightspath): | |
# load our YOLO object detector trained on COCO dataset (80 classes) | |
print("[INFO] loading YOLO from disk...") | |
net = cv2.dnn.readNetFromDarknet(configpath, weightspath) | |
return net |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment