-
-
Save JarvisEQ/f7569d63370d8bb18798d24f4535592f to your computer and use it in GitHub Desktop.
Implementing an Artificial Neural Network in Pure Java (No external dependencies)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* | |
* @author Deus Jeraldy | |
* @Email: [email protected] | |
* BSD License | |
*/ | |
// np.java -> https://gist.github.com/Jeraldy/7d4262db0536d27906b1e397662512bc | |
import java.util.Arrays; | |
public class NN { | |
public static void main(String[] args) { | |
double[][] X = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; | |
double[][] Y = {{0}, {1}, {1}, {0}}; | |
int m = 4; | |
int nodes = 400; | |
X = np.T(X); | |
Y = np.T(Y); | |
double[][] W1 = np.random(nodes, 2); | |
double[][] b1 = new double[nodes][m]; | |
double[][] W2 = np.random(1, nodes); | |
double[][] b2 = new double[1][m]; | |
for (int i = 0; i < 4000; i++) { | |
// Foward Prop | |
// LAYER 1 | |
double[][] Z1 = np.add(np.dot(W1, X), b1); | |
double[][] A1 = np.sigmoid(Z1); | |
//LAYER 2 | |
double[][] Z2 = np.add(np.dot(W2, A1), b2); | |
double[][] A2 = np.sigmoid(Z2); | |
double cost = np.cross_entropy(m, Y, A2); | |
costs.getData().add(new XYChart.Data(i, cost)); | |
// Back Prop | |
//LAYER 2 | |
double[][] dZ2 = np.subtract(A2, Y); | |
double[][] dW2 = np.divide(np.dot(dZ2, np.T(A1)), m); | |
double[][] db2 = np.divide(dZ2, m); | |
//LAYER 1 | |
double[][] dZ1 = np.multiply(np.dot(np.T(W2), dZ2), np.subtract(1.0, np.power(A1, 2))); | |
double[][] dW1 = np.divide(np.dot(dZ1, np.T(X)), m); | |
double[][] db1 = np.divide(dZ1, m); | |
// G.D | |
W1 = np.subtract(W1, np.multiply(0.01, dW1)); | |
b1 = np.subtract(b1, np.multiply(0.01, db1)); | |
W2 = np.subtract(W2, np.multiply(0.01, dW2)); | |
b2 = np.subtract(b2, np.multiply(0.01, db2)); | |
if (i % 400 == 0) { | |
print("=============="); | |
print("Cost = " + cost); | |
print("Predictions = " + Arrays.deepToString(A2)); | |
} | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment