Last active
February 6, 2020 15:51
-
-
Save Jdoz/56347e106aa310fda80d311fc2245e93 to your computer and use it in GitHub Desktop.
[Pandas Memory Reduce] Convert numeric columns in pandas dataframe to smaller byte sizes. #python #pandas
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def reduce_mem_usage(df, verbose=True): | |
"""Converts numeric columns to properly sized bytes to reduce overall dataframe size in memory""" | |
numerics = ["int16", "int32", "int64", "float16", "float32", "float64"] | |
start_mem = df.memory_usage().sum() / 1024 ** 2 | |
for col in df.columns: | |
col_type = df[col].dtypes | |
if col_type in numerics: | |
c_min = df[col].min() | |
c_max = df[col].max() | |
if str(col_type)[:3] == "int": | |
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: | |
df[col] = df[col].astype(np.int8) | |
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: | |
df[col] = df[col].astype(np.int16) | |
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: | |
df[col] = df[col].astype(np.int32) | |
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: | |
df[col] = df[col].astype(np.int64) | |
else: | |
if ( | |
c_min > np.finfo(np.float16).min | |
and c_max < np.finfo(np.float16).max | |
): | |
df[col] = df[col].astype(np.float16) | |
elif ( | |
c_min > np.finfo(np.float32).min | |
and c_max < np.finfo(np.float32).max | |
): | |
df[col] = df[col].astype(np.float32) | |
else: | |
df[col] = df[col].astype(np.float64) | |
end_mem = df.memory_usage().sum() / 1024 ** 2 | |
if verbose: | |
print( | |
"Mem. usage decreased by {:.1f}%)".format( | |
end_mem, 100 * (start_mem - end_mem) / start_mem | |
) | |
) | |
return df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment