nPort has a fairly complete set of complex arithmetic and matrix algebra methods. You can see them all here at https://github.com/JerryWiltz/nP/blob/master/README.md
Last active
May 30, 2019 00:33
-
-
Save JerryWiltz/51b63f59e98f13ac71eb7c6f9024e995 to your computer and use it in GitHub Desktop.
Complex Arithmetic and Matrix Algebra
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
license: gpl-3.0 | |
height: 600 | |
scrolling: yes | |
border: yes |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html> | |
<head> | |
<meta charset="utf-8"> | |
<meta name="viewport" content="width=device-width"> | |
<title>Complex Numbers and Martices</title> | |
</head> | |
<body> | |
<h3>Complex Numbers and Matrices</h3> | |
<script src="https://cdn.jsdelivr.net/gh/JerryWiltz/nP@master/dist/nP.js"></script> | |
<script> | |
// define log function | |
function log (text) { | |
var p = document.createElement('p'); | |
p.innerHTML = text + '<br>'; | |
document.body.appendChild(p); | |
} | |
log('Part 1. Complex Numbers'); | |
log('Basic add, subtract, multiply, and divide'); | |
// how to define complex numbers in nPort, for any c = x + iy, c = nP.complex(x, y) | |
var c1 = nP.complex(5, 1); | |
var c2 = nP.complex(1, 3); | |
var cAdd = c1.add(c2); | |
var cSub = c1.sub(c2); | |
var cMul = c1.mul(c2); | |
var c3 = nP.complex(9, -8); | |
var c4 = nP.complex(5, 2); | |
var cDiv = c3.div(c4); | |
log('cAdd is (' + cAdd.x.toString() + ', i' + cAdd.y.toString() + ')'); | |
log('cSub is (' + cSub.x.toString() + ', i' + cSub.y.toString() + ')'); | |
log('cMul is (' + cMul.x.toString() + ', i' + cMul.y.toString() + ')'); | |
log('cDiv is (' + cDiv.x.toString() + ', i' + cDiv.y.toString() + ')'); | |
log('--------------------------------------------------------------------'); | |
log('Basic method chaining example shows cMethodChain is equal to c1'); | |
var cMethodChain = c1.add(c2).sub(c2).mul(c3).div(c3); | |
log('cMethodChain is (' + cMethodChain.x.toString() + ', i' + cMethodChain.y.toString() + ')'); | |
log('===================================================================='); | |
log('Part 2. Complex matrix add, subtract, multipley, and invert'); | |
// put them in a 2 by 2 matrix | |
var m1 = nP.matrix([ | |
[c1, c2], | |
[c3, c4] | |
]); | |
// display m1 | |
log('The original matrix, m1'); | |
nP.showMatrixCplx(m1.m); | |
// invert matrix, m1 | |
log('The inverted matrix, m2'); | |
var m2 = m1.invertCplx(); | |
// display m2 | |
nP.showMatrixCplx(m2.m); | |
// multipliy m1 by m2 | |
var m3 = m1.mulCplx(m2); | |
// display m3 | |
log('The product of m1 and m2, m3'); | |
nP.showMatrixCplx(m3.m); | |
log('--------------------------------------------------------------------'); | |
log('Basic method chaining for Matices') | |
var m4 = m3.mulCplx(m2).subCplx(m1).addCplx(m1); | |
log('The result of method chaining'); | |
nP.showMatrixCplx(m4.m); | |
</script> | |
</body> | |
</html> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment