Created
October 18, 2024 06:00
-
-
Save JimGrange/2297fbc1d5052a3bc78fd4661e6f40e6 to your computer and use it in GitHub Desktop.
Simulating effects of sample size and trial numbers from linear mixed models
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(faux) | |
library(lme4) | |
library(afex) | |
options(dplyr.summarise.inform = FALSE) | |
set.seed(123) | |
sim_data <- function(n_subj, n_trials){ | |
# set all data-generating parameters | |
beta_0 <- 800 # intercept; i.e., the grand mean | |
beta_1 <- 50 # slope; i.e, effect of category | |
omega_0 <- 80 # by-item random intercept sd | |
tau_0 <- 100 # by-subject random intercept sd | |
tau_1 <- 40 # by-subject random slope sd | |
rho <- .2 # correlation between intercept and slope | |
sigma <- 200 # residual (error) sd | |
n_subj <- n_subj | |
n_trials <- n_trials | |
items <- tibble( | |
trial = seq_len(n_trials), | |
condition = rep(c("A", "B"), c(n_trials / 2, n_trials / 2)), | |
X_i = rep(c(-0.5, 0.5), c(n_trials / 2, n_trials / 2)), | |
O_0i = rnorm(n = n_trials, mean = 0, sd = omega_0) | |
) | |
# simulate a sample of subjects | |
# sample from a multivariate random distribution | |
subjects <- faux::rnorm_multi( | |
n = n_subj, | |
mu = 0, # means for random effects are always 0 | |
sd = c(tau_0, tau_1), # set SDs | |
r = rho, # set correlation, see ?rnorm_multi | |
varnames = c("T_0s", "T_1s") | |
) |> | |
round(2) | |
# add subject IDs | |
subjects$subj_id <- seq_len(n_subj) | |
# cross subject and item IDs; add an error term | |
# nrow(.) is the number of rows in the table | |
trials <- crossing(subjects, items) %>% | |
mutate(e_si = rnorm(nrow(.), mean = 0, sd = sigma)) | |
dat_sim <- trials %>% | |
mutate(RT = beta_0 + T_0s + (beta_1 + T_1s) * X_i + e_si) %>% | |
select(subj_id, trial, condition, X_i, RT) | |
dat_sim <- dat_sim |> | |
select(id = subj_id, trial, condition, condition_coded = X_i, rt = RT) | |
# model & check significance of aggregate data | |
agg_data <- dat_sim |> | |
group_by(id, condition_coded) |> | |
summarise(mean_rt = mean(rt)) | |
agg_data_model <- lm(mean_rt ~ 1 + condition_coded, data = agg_data) | |
p_value_agg <- as.numeric(summary(agg_data_model)$coefficients[, "Pr(>|t|)"][2]) | |
# model & check significance of trial-level data | |
trial_data_model <- lmer(rt ~ 1 + condition_coded + (1 + condition|id), | |
data = dat_sim) | |
p_value_trial <- as.numeric(summary(trial_data_model)$coefficients[, "Pr(>|t|)"][2]) | |
return(round(c(p_value_agg, p_value_trial), 3)) | |
} | |
n_sims <- 100 | |
sims <- 1:n_sims | |
n_subj <- c(10, 20, 30, 50, 100) | |
n_trials <- c(100, 250, 1000) | |
sim_results <- tibble(crossing(n_subj, n_trials, sims)) |> | |
mutate(p_agg = 0, p_lmm = 0) | |
for(i in 1:nrow(sim_results)){ | |
print(i) | |
sim <- sim_data(sim_results$n_subj[i], | |
sim_results$n_trials[i]) | |
sim_results$p_agg[i] <- sim[1] | |
sim_results$p_lmm[i] <- sim[2] | |
} | |
pd = position_dodge(3) | |
sim_results |> | |
group_by(n_subj, n_trials) |> | |
summarise(power_agg = (sum(p_agg < 0.05) / n_sims), | |
power_lmm = (sum(p_lmm < 0.05) / n_sims)) |> | |
mutate(n_trials = as.factor(n_trials)) |> | |
pivot_longer(power_agg:power_lmm) |> | |
ggplot(aes(x = n_subj, y = value, group = n_trials)) + | |
geom_hline(yintercept = 0.8, | |
colour = "grey", | |
linewidth = 1.2) + | |
geom_line(aes(colour = n_trials), | |
position = pd, | |
linewidth = 1) + | |
geom_point(aes(colour = n_trials), | |
position = pd, | |
size = 2.5) + | |
scale_x_continuous(breaks = c(10, 20, 30, 50, 100)) + | |
facet_wrap(~name) + | |
labs(x = "Number of Subjects", | |
y = "Power") + | |
theme(text = element_text(size = 16)) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment