Created
November 29, 2023 08:02
-
-
Save JimGrange/2319340015675ad075fea4b7acee9b43 to your computer and use it in GitHub Desktop.
poole_cuing_analysis.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# load packages ----------------------------------------------------------- | |
library(tidyverse) | |
library(brms) | |
library(tidybayes) | |
library(bayesplot) | |
library(emmeans) | |
library(bayestestR) | |
# import data ------------------------------------------------------------- | |
#--- ...although for now we're just making data up | |
# for reproducibility | |
set.seed(123) | |
# set number of subjects & number of trials per cell (here set to 100 for each) | |
n_subjects <- 100 | |
n_trials <- 100 * 4 | |
# simulate trial-level data | |
data <- tibble( | |
crossing( | |
id = 1:n_subjects, | |
trial = 1:n_trials | |
) | |
) |> | |
mutate(congruency = sample(c("congruent", "incongruent"), | |
n_subjects * n_trials, | |
replace = TRUE), | |
cue = sample(c("informative", "noninformative"), | |
n_subjects * n_trials, | |
replace = TRUE)) |> | |
mutate(rt = rnorm(n_subjects * n_trials, 500, 60) + | |
rexp(n_subjects * n_trials, 1 / 100)) | |
# calculate aggregate data | |
data <- data |> | |
group_by(id, congruency, cue) |> | |
summarise(rt = mean(rt)) | |
# fit the bayesian regressions -------------------------------------------- | |
# fit the interaction model | |
int_model <- brm(rt ~ congruency * cue + (1|id), | |
data = data, | |
iter = 5000, | |
warmup = 2000, | |
chains = 4, | |
cores = 4, | |
seed = 123, | |
save_pars = save_pars(all = TRUE)) | |
# model summary & model checks | |
summary(int_model) | |
plot(int_model) | |
pp_check(int_model, ndraws = 100) | |
# fit the main effects model | |
main_model <- brm(rt ~ congruency + cue + (1|id), | |
data = data, | |
iter = 5000, | |
warmup = 2000, | |
chains = 4, | |
cores = 4, | |
seed = 123, | |
save_pars = save_pars(all = TRUE)) | |
# model summary & model checks | |
summary(main_model) | |
plot(main_model) | |
pp_check(main_model, ndraws = 100) | |
# model selection & posterior summary ------------------------------------- | |
#--- calculate bayes factor | |
bayesfactor_models(int_model, denominator = main_model) | |
#--- ROPE | |
# extract the posterior of the interaction term in the interaction model | |
int_posterior <- int_model |> | |
spread_draws(`b_congruencyincongruent:cuenoninformative`) |> | |
dplyr::select(`b_congruencyincongruent:cuenoninformative`) |> | |
pull() | |
# calculate percentage of posterior within rope | |
rope_min <- -0.2 | |
rope_max <- 0.2 | |
int_in_rope <- (sum(int_posterior > rope_min & int_posterior < rope_max) / | |
length(int_posterior)) * 100 | |
# post-hocs --------------------------------------------------------------- | |
#--- simple effects | |
# main effect of congruency | |
main_eff_cong <- pairs(emmeans(int_model, ~ congruency)) | |
# main effect of cue | |
main_eff_cue <- pairs(emmeans(int_model, ~ cue)) | |
# interaction | |
int <- emmeans(int_model, ~ congruency * cue) | |
interaction <- pairs(int, by = "cue") | |
# robustness checks ------------------------------------------------------- | |
# etc.... |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment