Skip to content

Instantly share code, notes, and snippets.

@JimGrange
Last active November 27, 2015 15:16
Show Gist options
  • Save JimGrange/4ac9d4b9dc7eebc82eba to your computer and use it in GitHub Desktop.
Save JimGrange/4ac9d4b9dc7eebc82eba to your computer and use it in GitHub Desktop.
Code for animating robustness check of Bayesian prior.
### plots of prior robustness check
# gif created from PNG plots using http://gifmaker.me/
# clear R's memory
rm(list = ls())
# load the Bayes factor package
library(BayesFactor)
# set working directory (will be used to save files here, so make sure
# this is where you want to save your plots!)
setwd <- "D:/Work//Blog_YouTube code//Blog/Prior Robust Visualisation/plots"
#------------------------------------------------------------------------------
### declare some variables for the analysis
# what is the t-value for the data?
tVal <- 3.098
# how many points in the prior should be explored?
nPoints <- 1000
# what Cauchy rates should be explored?
cauchyRates <- seq(from = 0.01, to = 1.5, length.out = nPoints)
# what effect sizes should be plotted?
effSize <- seq(from = -2, to = 2, length.out = nPoints)
# get the Bayes factor for each prior value
bayesFactors <- sapply(cauchyRates, function(x)
exp(ttest.tstat(t = tVal, n1 = 76, rscale = x)[['bf']]))
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
### do the plotting
# how many plots do we want to produce?
nPlots <- 50
plotWidth <- round(seq(from = 1, to = nPoints, length.out = nPlots), 0)
# loop over each plot
for(i in plotWidth){
# set up the file
currFile <- paste(getwd(), "/plot_", i, ".png", sep = "")
# initiate the png file
png(file = currFile, width = 1200, height = 1000, res = 200)
# change the plotting window so plots appear side-by-side
par(mfrow = c(1, 2))
#----
# do the prior density plot
d <- dcauchy(effSize, scale = cauchyRates[i])
plot(effSize, d, type = "l", ylim = c(0, 5), xlim = c(-2, 2),
ylab = "Density", xlab = "Effect Size (d)", lwd = 2, col = "gray48",
main = paste("Rate (r) = ", round(cauchyRates[i], 3), sep = ""))
#-----
# do the Bayes factor plot
plot(cauchyRates, bayesFactors, type = "l", lwd = 2, col = "gray48",
ylim = c(0, max(bayesFactors)), xaxt = "n",
xlab = "Cauchy Prior Width (r)", ylab = "Bayes Factor (10)")
abline(h = 0, lwd = 1)
abline(h = 6, col = "black", lty = 2, lwd = 2)
axis(1, at = seq(0, 1.5, 0.25))
# add the BF at the default Cauchy point
points(0.707, 9.97, col = "black", cex = 1.5, pch = 21, bg = "red")
# add the BF for the Cauchy prior currently being plotted
points(cauchyRates[i], bayesFactors[i], col = "black", pch = 21, cex = 1.3,
bg = "cyan")
# add legend
legend(x = 0.25, y = 3, legend = c("r = 0.707", paste("r = ",
round(cauchyRates[i], 3),
sep = "")),
pch = c(21, 21), lty = c(NA, NA), lwd = c(NA, NA), pt.cex = c(1, 1),
col = c("black", "black"), pt.bg = c("red", "cyan"), bty = "n")
# save the current plot
dev.off()
}
#------------------------------------------------------------------------------
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment