Created
November 10, 2023 14:57
-
-
Save JimGrange/f347843bf990a9b97b05869af4e5fc23 to your computer and use it in GitHub Desktop.
linear modelling vs. aggregate analysis
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(faux) | |
library(lme4) | |
library(afex) | |
options(dplyr.summarise.inform = FALSE) | |
set.seed(123) | |
sim_data <- function(n_subj, n_trials){ | |
# set all data-generating parameters | |
beta_0 <- 800 # intercept; i.e., the grand mean | |
beta_1 <- 50 # slope; i.e, effect of category | |
omega_0 <- 80 # by-item random intercept sd | |
tau_0 <- 100 # by-subject random intercept sd | |
tau_1 <- 40 # by-subject random slope sd | |
rho <- .2 # correlation between intercept and slope | |
sigma <- 200 # residual (error) sd | |
n_subj <- n_subj | |
n_trials <- n_trials | |
items <- tibble( | |
trial = seq_len(n_trials), | |
condition = rep(c("A", "B"), c(n_trials / 2, n_trials / 2)), | |
X_i = rep(c(-0.5, 0.5), c(n_trials / 2, n_trials / 2)), | |
O_0i = rnorm(n = n_trials, mean = 0, sd = omega_0) | |
) | |
# simulate a sample of subjects | |
# sample from a multivariate random distribution | |
subjects <- faux::rnorm_multi( | |
n = n_subj, | |
mu = 0, # means for random effects are always 0 | |
sd = c(tau_0, tau_1), # set SDs | |
r = rho, # set correlation, see ?rnorm_multi | |
varnames = c("T_0s", "T_1s") | |
) |> | |
round(2) | |
# add subject IDs | |
subjects$subj_id <- seq_len(n_subj) | |
# cross subject and item IDs; add an error term | |
# nrow(.) is the number of rows in the table | |
trials <- crossing(subjects, items) %>% | |
mutate(e_si = rnorm(nrow(.), mean = 0, sd = sigma)) | |
dat_sim <- trials %>% | |
mutate(RT = beta_0 + T_0s + (beta_1 + T_1s) * X_i + e_si) %>% | |
select(subj_id, trial, condition, X_i, RT) | |
dat_sim <- dat_sim |> | |
select(id = subj_id, trial, condition, condition_coded = X_i, rt = RT) | |
# model & check significance of aggregate data | |
agg_data <- dat_sim |> | |
group_by(id, condition_coded) |> | |
summarise(mean_rt = mean(rt)) | |
agg_data_model <- lm(mean_rt ~ 1 + condition_coded, data = agg_data) | |
p_value_agg <- as.numeric(summary(agg_data_model)$coefficients[, "Pr(>|t|)"][2]) | |
# model & check significance of trial-level data | |
trial_data_model <- lmer(rt ~ 1 + condition_coded + (1 + condition|id), | |
data = dat_sim) | |
p_value_trial <- as.numeric(summary(trial_data_model)$coefficients[, "Pr(>|t|)"][2]) | |
return(round(c(p_value_agg, p_value_trial), 3)) | |
} | |
n_sims <- 100 | |
sims <- 1:n_sims | |
n_subj <- c(10, 20, 30, 50, 100) | |
n_trials <- c(100, 250, 1000) | |
sim_results <- tibble(crossing(n_subj, n_trials, sims)) |> | |
mutate(p_agg = 0, p_lmm = 0) | |
for(i in 1:nrow(sim_results)){ | |
print(i) | |
sim <- sim_data(sim_results$n_subj[i], | |
sim_results$n_trials[i]) | |
sim_results$p_agg[i] <- sim[1] | |
sim_results$p_lmm[i] <- sim[2] | |
} | |
pd = position_dodge(3) | |
sim_results |> | |
group_by(n_subj, n_trials) |> | |
summarise(power_agg = (sum(p_agg < 0.05) / n_sims), | |
power_lmm = (sum(p_lmm < 0.05) / n_sims)) |> | |
mutate(n_trials = as.factor(n_trials)) |> | |
pivot_longer(power_agg:power_lmm) |> | |
ggplot(aes(x = n_subj, y = value, group = n_trials)) + | |
geom_hline(yintercept = 0.8, | |
colour = "grey", | |
linewidth = 1.2) + | |
geom_line(aes(colour = n_trials), | |
position = pd, | |
linewidth = 1) + | |
geom_point(aes(colour = n_trials), | |
position = pd, | |
size = 2.5) + | |
scale_x_continuous(breaks = c(10, 20, 30, 50, 100)) + | |
facet_wrap(~name) + | |
labs(x = "Number of Subjects", | |
y = "Power") + | |
theme(text = element_text(size = 16)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment