Created
April 18, 2018 16:51
-
-
Save JirenJin/b70ce3516d2790923f9f0ea4d9a18250 to your computer and use it in GitHub Desktop.
Reproduce the problem related to `Chainer.datasets.TransformDataset` and `Chainer.training.Evaluator`.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import argparse | |
import chainer | |
import chainer.functions as F | |
import chainer.links as L | |
from chainer import training | |
from chainer.training import extensions | |
from chainer.datasets import TransformDataset | |
import matplotlib | |
matplotlib.use('agg') | |
# Network definition | |
class MLP(chainer.Chain): | |
def __init__(self, n_units, n_out): | |
super(MLP, self).__init__() | |
with self.init_scope(): | |
# the size of the inputs to each layer will be inferred | |
self.l1 = L.Linear(None, n_units) # n_in -> n_units | |
self.l2 = L.Linear(None, n_units) # n_units -> n_units | |
self.l3 = L.Linear(None, n_out) # n_units -> n_out | |
def __call__(self, x): | |
h1 = F.relu(self.l1(x)) | |
h2 = F.relu(self.l2(h1)) | |
return self.l3(h2) | |
def main(): | |
parser = argparse.ArgumentParser(description='Chainer example: MNIST') | |
parser.add_argument('--batchsize', '-b', type=int, default=100, | |
help='Number of images in each mini-batch') | |
parser.add_argument('--epoch', '-e', type=int, default=20, | |
help='Number of sweeps over the dataset to train') | |
parser.add_argument('--frequency', '-f', type=int, default=-1, | |
help='Frequency of taking a snapshot') | |
parser.add_argument('--gpu', '-g', type=int, default=-1, | |
help='GPU ID (negative value indicates CPU)') | |
parser.add_argument('--out', '-o', default='result', | |
help='Directory to output the result') | |
parser.add_argument('--resume', '-r', default='', | |
help='Resume the training from snapshot') | |
parser.add_argument('--unit', '-u', type=int, default=1000, | |
help='Number of units') | |
parser.add_argument('--noplot', dest='plot', action='store_false', | |
help='Disable PlotReport extension') | |
args = parser.parse_args() | |
print('GPU: {}'.format(args.gpu)) | |
print('# unit: {}'.format(args.unit)) | |
print('# Minibatch-size: {}'.format(args.batchsize)) | |
print('# epoch: {}'.format(args.epoch)) | |
print('') | |
# Set up a neural network to train | |
# Classifier reports softmax cross entropy loss and accuracy at every | |
# iteration, which will be used by the PrintReport extension below. | |
model = L.Classifier(MLP(args.unit, 10)) | |
if args.gpu >= 0: | |
# Make a specified GPU current | |
chainer.backends.cuda.get_device_from_id(args.gpu).use() | |
model.to_gpu() # Copy the model to the GPU | |
# Setup an optimizer | |
optimizer = chainer.optimizers.Adam() | |
optimizer.setup(model) | |
# Load the MNIST dataset | |
train, test = chainer.datasets.get_mnist() | |
def transform(in_data): | |
img, label = in_data | |
img -= 0.5 | |
return img, label | |
train = TransformDataset(train, transform) | |
test = TransformDataset(test, transform) | |
train_iter = chainer.iterators.SerialIterator(train, args.batchsize) | |
test_iter = chainer.iterators.SerialIterator(test, args.batchsize, | |
repeat=False, shuffle=False) | |
# Set up a trainer | |
updater = training.updaters.StandardUpdater( | |
train_iter, optimizer, device=args.gpu) | |
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) | |
# Evaluate the model with the test dataset for each epoch | |
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu), trigger=(100, 'iteration')) | |
# Dump a computational graph from 'loss' variable at the first iteration | |
# The "main" refers to the target link of the "main" optimizer. | |
trainer.extend(extensions.dump_graph('main/loss')) | |
# Take a snapshot for each specified epoch | |
frequency = args.epoch if args.frequency == -1 else max(1, args.frequency) | |
trainer.extend(extensions.snapshot(), trigger=(frequency, 'epoch')) | |
# Write a log of evaluation statistics for each epoch | |
trainer.extend(extensions.LogReport(trigger=(100, 'iteration'))) | |
# Save two plot images to the result dir | |
if args.plot and extensions.PlotReport.available(): | |
trainer.extend( | |
extensions.PlotReport(['main/loss', 'validation/main/loss'], | |
'epoch', file_name='loss.png')) | |
trainer.extend( | |
extensions.PlotReport( | |
['main/accuracy', 'validation/main/accuracy'], | |
'epoch', file_name='accuracy.png')) | |
# Print selected entries of the log to stdout | |
# Here "main" refers to the target link of the "main" optimizer again, and | |
# "validation" refers to the default name of the Evaluator extension. | |
# Entries other than 'epoch' are reported by the Classifier link, called by | |
# either the updater or the evaluator. | |
trainer.extend(extensions.PrintReport( | |
['epoch', 'main/loss', 'validation/main/loss', | |
'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) | |
# Print a progress bar to stdout | |
trainer.extend(extensions.ProgressBar()) | |
if args.resume: | |
# Resume from a snapshot | |
chainer.serializers.load_npz(args.resume, trainer) | |
# Run the training | |
trainer.run() | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment