Created
June 8, 2018 20:24
-
-
Save JoachimGoedhart/c341d616534ae2fab6ab73db423a8f76 to your computer and use it in GitHub Desktop.
Reads non-tidy time-dependent data and calculates statistics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Reads a non-tidy (wide) dataframe from csv file and assumes first column to be time, remaining columns measured parameter (Ratio) per condition (Cell). | |
df_wide <- read.csv("FRET-ratio-wide.csv", na.strings = "") | |
#Tidy the data, i.e. long format with each row is variable | |
df_tidy <- gather(df_wide, Cell, Ratio, -Time) | |
######### Calulcate summary statistics to fill dataframe 'df_summary' ######## | |
# This is base R approach | |
df_summary <- data.frame(Time=df_wide$Time, n=tapply(df_tidy$Ratio, df_tidy$Time, length), mean=tapply(df_tidy$Ratio, df_tidy$Time, mean)) | |
#Add SD and standard error of the mean to the dataframe | |
df_summary$sd <- tapply(df_tidy$Ratio, df_tidy$Time, sd) | |
df_summary$sem <- df_summary$sd/sqrt(df_summary$n-1) | |
#Add 95% CI of the mean to the dataframe | |
df_summary$CI_lower <- df_summary$mean + qt((1-Conf_level)/2, df=df_summary$n-1)*df_summary$sem | |
df_summary$CI_upper <- df_summary$mean - qt((1-Conf_level)/2, df=df_summary$n-1)*df_summary$sem | |
######### Calulcate summary statistics to fill dataframe 'df_summary' ######## | |
# This is tidyverse approach | |
require(magrittr) | |
require(dplyr) | |
df_summary <- df_tidy %>% | |
group_by(Time) %>% | |
summarise(mean = mean(Ratio, na.rm = TRUE), | |
sd = sd(Ratio, na.rm = TRUE), | |
n = n()) %>% | |
mutate(sem = sd / sqrt(n - 1), | |
CI_lower = mean + qt((1-Conf_level)/2, n - 1) * sem, | |
CI_upper = mean - qt((1-Conf_level)/2, n - 1) * sem) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment