-
-
Save JonathanLoscalzo/75e7359fd245202658aca79265f929b3 to your computer and use it in GitHub Desktop.
pytorch: architecture pattern
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class ImagesDataset(torch.utils.data.Dataset): | |
pass | |
class Net(nn.Module): | |
pass | |
model = Net() | |
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) | |
scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) | |
criterion = torch.nn.MSELoss() | |
dataset = ImagesDataset(path_to_images) | |
data_loader = torch.utils.data.DataLoader(dataset, batch_size=10) | |
train = True | |
for epoch in range(epochs): | |
if train: | |
lr_scheduler.step() | |
for inputs, labels in data_loader: | |
inputs = Variable(to_gpu(inputs)) | |
labels = Variable(to_gpu(labels)) | |
outputs = model(inputs) | |
loss = criterion(outputs, labels) | |
if train: | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
if not train: | |
save_best_model(epoch_validation_accuracy) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment