Created
November 24, 2014 11:16
-
-
Save JonnoFTW/03401ada8c3324896b88 to your computer and use it in GitHub Desktop.
Basic template I use for LaTeX documents
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[11pt]{article} | |
\usepackage[english]{babel} | |
\usepackage{a4wide} | |
\usepackage[utf8]{inputenc} | |
\usepackage{natbib} | |
\usepackage{graphicx} | |
\usepackage{url} | |
\usepackage{amsmath} | |
\usepackage{amssymb} | |
\usepackage[T1]{fontenc} | |
\usepackage{hyperref} | |
\usepackage{textcomp} | |
\usepackage{gensymb} | |
\usepackage{textcomp} | |
\usepackage{xcolor} | |
\definecolor{dark-red}{rgb}{0.4,0.15,0.15} | |
\definecolor{dark-blue}{rgb}{0.15,0.15,0.4} | |
\definecolor{medium-blue}{rgb}{0,0,0.5} | |
\hypersetup{ | |
colorlinks, linkcolor={black}, | |
citecolor={dark-blue}, urlcolor={medium-blue} | |
} | |
\setcounter{tocdepth}{2} | |
\begin{document} | |
\title{Title \\ Line 1 \\ Differential Equations \\ Modelling a Pendulum} | |
\author{Spartacus} | |
\maketitle | |
\tableofcontents | |
\section{Introduction} | |
In this report I will work through the process of modelling the action of a pendulum using differential equations. | |
\section{Analysis} | |
The pendulum is drawn in figure \ref{pendulum}. Our end goal is to find the period of the pendulum. To do this, we must determine the sum of the forces acting on the pendulum. | |
\begin{figure}[ht!] | |
\centering | |
\includegraphics[width=0.5\textwidth]{Pendulum_gravity.png} | |
\caption{The forces acting on the pendulum \citep{wiki:pendulum_maths} \label{pendulum}} | |
\end{figure} | |
Adding up the forces gives us the second order differential equation: | |
\begin{align} | |
m l \frac{d^2\theta}{dt^2} + 10 \frac{d\theta}{dt} - mg\sin(\theta) = 0 | |
\end{align} | |
We can simplify this since $sin(\theta) \approx \theta$ for small $\theta$ to get the linear ODE | |
\begin{align} | |
m l \frac{d^2\theta}{dt^2} + 10 \frac{d\theta}{dt} - mg\theta = 0 | |
\end{align} | |
\bibliographystyle{agsm} | |
\bibliography{refs} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment