Created
June 26, 2019 13:55
-
-
Save JonnoFTW/5f0a7e5f5f7f0b7b939702b4230a2d6d to your computer and use it in GitHub Desktop.
mnist with pygame
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
pip install -U pygame numpy tensorflow keras opencv-python | |
""" | |
from datetime import datetime | |
import pygame | |
import os | |
import sys | |
import cv2 | |
import numpy as np | |
fname = 'mnist.h5' | |
def get_model(): | |
from keras.models import Sequential, load_model | |
if os.path.exists(fname): | |
return load_model(fname) | |
from keras.datasets import mnist | |
from keras.layers import Dense, Dropout, Flatten | |
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() | |
train_images = train_images.reshape((60000, 28, 28, 1)) / 255.0 | |
test_images = test_images.reshape((10000, 28, 28, 1)) / 255.0 | |
model = Sequential() | |
model.add(Flatten(input_shape=(28, 28, 1))) | |
model.add(Dense(256, activation='relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(128, activation='relu')) | |
model.add(Dropout(0.5)) | |
model.add(Dense(10, activation='softmax')) | |
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) | |
model.fit(train_images, train_labels, epochs=5) | |
test_loss, testacc = model.evaluate(test_images, test_labels) | |
print("Finished training:", test_loss) | |
model.save(fname) | |
return model | |
if __name__ == "__main__": | |
model = get_model() | |
fps = 60 | |
fps_clock = pygame.time.Clock() | |
pygame.init() | |
screen = pygame.display.set_mode((512, 512)) | |
screen.fill((0, 0, 0)) | |
start = datetime.now() | |
drawing = False | |
while True: | |
events = pygame.event.get() | |
for e in events: | |
if e.type == pygame.QUIT: | |
sys.exit() | |
elif e.type == pygame.MOUSEBUTTONDOWN: | |
# DRAWING | |
if e.button == pygame.BUTTON_RIGHT: | |
screen.fill((0, 0, 0)) | |
else: | |
drawing = True | |
elif e.type == pygame.MOUSEBUTTONUP: | |
# STOPPED drawing | |
drawing = False | |
if drawing: | |
pos = pygame.mouse.get_pos() | |
pygame.draw.circle(screen, (255, 255, 255), pos, 12) | |
# make prediction | |
small_img = (cv2.cvtColor(cv2.resize(np.flipud(np.rot90(pygame.surfarray.array3d(screen))), (28, 28)), cv2.COLOR_RGB2GRAY) / 255.0) | |
small_img =small_img.reshape(28, 28, 1) | |
pred = str(model.predict_classes(np.array([small_img]), batch_size=1)[0]) | |
pygame.display.set_caption("MNIST Pred: {} at {:.2f} FPS".format(pred, fps_clock.get_fps())) | |
pygame.display.flip() | |
fps_clock.tick(fps) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment