Last active
August 15, 2018 07:30
-
-
Save JonnoFTW/d4ba1f3b88f0c376981dddadd2a21e7b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import os | |
import json | |
import time | |
import pandas as pd | |
import requests | |
from mlxtend.preprocessing import TransactionEncoder | |
from mlxtend.frequent_patterns import apriori | |
def load_json(fname): | |
with open(fname, 'r') as infile: | |
data = json.load(infile) | |
return data | |
def load_matches(): | |
return load_json('matches.json') | |
def save_json(url, fname): | |
response = requests.get(url).text | |
with open(fname, 'w') as out_file: | |
out_file.write(response) | |
del response | |
print("Downloaded", fname) | |
def main(teams=[]): | |
matches = load_matches() | |
if not os.path.exists('heroes.json'): | |
save_json('https://api.opendota.com/api/heroes', 'heroes.json') | |
heroes = {x['id']: x['localized_name'] for x in load_json('heroes.json')} | |
tbl = [] | |
for m in matches: | |
if m['start_time'] < 1473984000: | |
continue | |
if teams != [] and m['opposing_team_name'] not in teams: | |
continue | |
fname = f'matches/{m["match_id"]}.json' | |
url = f'https://api.opendota.com/api/matches/{m["match_id"]}' | |
if not os.path.exists(fname): | |
save_json(url, fname) | |
time.sleep(1) | |
match_obj = load_json(fname) | |
if 'error' in match_obj: | |
save_json(url, fname) | |
match_obj = load_json(fname) | |
team = 'radiant' if m['radiant'] else 'dire' | |
vals = [ | |
team, | |
'win' if m['radiant_win'] == (team == 'radiant') else 'loss', | |
m['opposing_team_name'] | |
] | |
for i in match_obj['players']: | |
if i['isRadiant'] == m['radiant']: | |
vals.append('with_' + heroes[i['hero_id']]) | |
else: | |
vals.append('against_' + heroes[i['hero_id']]) | |
tbl.append(vals) | |
te = TransactionEncoder() | |
te_ary = te.fit(tbl).transform(tbl) | |
df = pd.DataFrame(te_ary, columns=te.columns_) | |
pd.set_option('display.max_colwidth', -1) | |
pd.set_option('display.max_rows', -1) | |
out_rules = apriori(df, min_support=0.05, use_colnames=True).sort_values('support') | |
return out_rules | |
if __name__ == "__main__": | |
import sys | |
out = main(sys.argv[1:]) | |
# we can return only those rows with 'win' in them | |
matcher = frozenset(['win']) | |
out1 = out[out.itemsets.map(matcher.intersection).map(bool)] | |
print(out1.to_string(index=False)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment