Created
January 27, 2018 05:32
-
-
Save JoseRFJuniorLLMs/232b25dac30d426a58c0e29c1dbba64d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Data Preprocessing | |
# Importing the libraries | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
# Importing the dataset | |
dataset = pd.read_csv('Data.csv') | |
X = dataset.iloc[:, :-1].values | |
y = dataset.iloc[:, 3].values | |
#Cuidando dados faltantes | |
from sklearn.preprocessing import Imputer | |
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) | |
imputer = imputer.fit(X[:, 1:3]) | |
X[:, 1:3] = imputer.transform(X[:, 1:3]) | |
# Codificação de dados categóricos | |
# Codificando a Variável Independente | |
from sklearn.preprocessing import LabelEncoder, OneHotEncoder | |
labelencoder_X = LabelEncoder() | |
X[:, 0] = labelencoder_X.fit_transform(X[:, 0]) | |
onehotencoder = OneHotEncoder(categorical_features = [0]) | |
X = onehotencoder.fit_transform(X).toarray() | |
# Codificando a Variável Dependente | |
labelencoder_y = LabelEncoder() | |
y = labelencoder_y.fit_transform(y) | |
print("X>",X) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment