Created
January 27, 2018 06:46
-
-
Save JoseRFJuniorLLMs/b9a0e918d255f48f7166f5ba1eb2d6da to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Classification template | |
# Importing the libraries | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
# Importing the dataset | |
dataset = pd.read_csv('Social_Network_Ads.csv') | |
X = dataset.iloc[:, [2, 3]].values | |
y = dataset.iloc[:, 4].values | |
# Splitting the dataset into the Training set and Test set | |
from sklearn.cross_validation import train_test_split | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) | |
# Feature Scaling | |
from sklearn.preprocessing import StandardScaler | |
sc = StandardScaler() | |
X_train = sc.fit_transform(X_train) | |
X_test = sc.transform(X_test) | |
# Fitting classifier to the Training set | |
# Create your classifier here | |
# Predicting the Test set results | |
y_pred = classifier.predict(X_test) | |
# Making the Confusion Matrix | |
from sklearn.metrics import confusion_matrix | |
cm = confusion_matrix(y_test, y_pred) | |
# Visualising the Training set results | |
from matplotlib.colors import ListedColormap | |
X_set, y_set = X_train, y_train | |
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), | |
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) | |
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), | |
alpha = 0.75, cmap = ListedColormap(('red', 'green'))) | |
plt.xlim(X1.min(), X1.max()) | |
plt.ylim(X2.min(), X2.max()) | |
for i, j in enumerate(np.unique(y_set)): | |
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], | |
c = ListedColormap(('red', 'green'))(i), label = j) | |
plt.title('Classifier (Training set)') | |
plt.xlabel('Age') | |
plt.ylabel('Estimated Salary') | |
plt.legend() | |
plt.show() | |
# Visualising the Test set results | |
from matplotlib.colors import ListedColormap | |
X_set, y_set = X_test, y_test | |
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), | |
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) | |
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), | |
alpha = 0.75, cmap = ListedColormap(('red', 'green'))) | |
plt.xlim(X1.min(), X1.max()) | |
plt.ylim(X2.min(), X2.max()) | |
for i, j in enumerate(np.unique(y_set)): | |
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], | |
c = ListedColormap(('red', 'green'))(i), label = j) | |
plt.title('Classifier (Test set)') | |
plt.xlabel('Age') | |
plt.ylabel('Estimated Salary') | |
plt.legend() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment