Skip to content

Instantly share code, notes, and snippets.

@JosephKJ
Last active June 23, 2017 16:26
Show Gist options
  • Save JosephKJ/13c46d7829b02f25bdbc615c39dbe2d1 to your computer and use it in GitHub Desktop.
Save JosephKJ/13c46d7829b02f25bdbc615c39dbe2d1 to your computer and use it in GitHub Desktop.
name: "VDSR"
layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
hdf5_data_param {
source: "examples/VDSR/train.txt"
batch_size: 64
}
include: { phase: TRAIN }
}
layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
hdf5_data_param {
source: "examples/VDSR/test.txt"
batch_size: 2
}
include: { phase: TEST }
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "conv1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv2"
top: "conv3"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "conv6"
type: "Convolution"
bottom: "conv5"
top: "conv6"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "conv6"
top: "conv6"
}
layer {
name: "conv7"
type: "Convolution"
bottom: "conv6"
top: "conv7"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "conv7"
top: "conv7"
}
layer {
name: "conv8"
type: "Convolution"
bottom: "conv7"
top: "conv8"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu8"
type: "ReLU"
bottom: "conv8"
top: "conv8"
}
layer {
name: "conv9"
type: "Convolution"
bottom: "conv8"
top: "conv9"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu9"
type: "ReLU"
bottom: "conv9"
top: "conv9"
}
layer {
name: "conv10"
type: "Convolution"
bottom: "conv9"
top: "conv10"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu10"
type: "ReLU"
bottom: "conv10"
top: "conv10"
}
layer {
name: "conv11"
type: "Convolution"
bottom: "conv10"
top: "conv11"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu11"
type: "ReLU"
bottom: "conv11"
top: "conv11"
}
layer {
name: "conv12"
type: "Convolution"
bottom: "conv11"
top: "conv12"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu12"
type: "ReLU"
bottom: "conv12"
top: "conv12"
}
layer {
name: "conv13"
type: "Convolution"
bottom: "conv12"
top: "conv13"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu13"
type: "ReLU"
bottom: "conv13"
top: "conv13"
}
layer {
name: "conv14"
type: "Convolution"
bottom: "conv13"
top: "conv14"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu14"
type: "ReLU"
bottom: "conv14"
top: "conv14"
}
layer {
name: "conv15"
type: "Convolution"
bottom: "conv14"
top: "conv15"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu15"
type: "ReLU"
bottom: "conv15"
top: "conv15"
}
layer {
name: "conv16"
type: "Convolution"
bottom: "conv15"
top: "conv16"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu16"
type: "ReLU"
bottom: "conv16"
top: "conv16"
}
layer {
name: "conv17"
type: "Convolution"
bottom: "conv16"
top: "conv17"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu17"
type: "ReLU"
bottom: "conv17"
top: "conv17"
}
layer {
name: "conv18"
type: "Convolution"
bottom: "conv17"
top: "conv18"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu18"
type: "ReLU"
bottom: "conv18"
top: "conv18"
}
layer {
name: "conv19"
type: "Convolution"
bottom: "conv18"
top: "conv19"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu19"
type: "ReLU"
bottom: "conv19"
top: "conv19"
}
layer {
name: "conv20"
type: "Convolution"
bottom: "conv19"
top: "conv20"
param {
lr_mult: 1
}
param {
lr_mult: 0.1
}
convolution_param {
num_output: 1
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "msra"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "sum"
type: "Eltwise"
bottom: "data"
bottom: "conv20"
top: "sum"
eltwise_param {
operation: 1
}
}
layer {
name: "loss"
type: "EuclideanLoss"
bottom: "sum"
bottom: "label"
top: "loss"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment