Created
December 24, 2019 14:15
-
-
Save JosephKJ/e523f77af6c5768538eda0c7e2af375a to your computer and use it in GitHub Desktop.
Visualize models trained with Detectron2
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
from detectron2.utils.logger import setup_logger | |
setup_logger() | |
from detectron2.config import get_cfg | |
from detectron2.engine import DefaultPredictor | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog | |
# Get image | |
im = cv2.imread("000002.jpg") | |
# Get the configuration ready | |
cfg = get_cfg() | |
cfg.merge_from_file("configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml") | |
cfg.MODEL.WEIGHTS = "model_final.pth" | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 | |
predictor = DefaultPredictor(cfg) | |
outputs = predictor(im) | |
v = Visualizer(im[:,:,::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) | |
v = v.draw_instance_predictions(outputs['instances'].to('cpu')) | |
img = v.get_image()[:, :, ::-1] | |
cv2.imwrite('output.jpg', img) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment