Created
July 18, 2013 05:57
-
-
Save JoshRosen/6026985 to your computer and use it in GitHub Desktop.
Methods missing from the Java API in Spark 0.7.3. This list may contain a few false-positives due to the automated script for finding the missing methods.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Missing RDD methods | |
spark.api.java.JavaRDD<T> filter(spark.api.java.function.Function<T, java.lang.Object>) | |
spark.api.java.JavaPairRDD<T, U> zip(spark.api.java.JavaRDD<U>) | |
void foreachPartition(spark.api.java.function.VoidFunction<java.util.Iterator<T>>) | |
void foreachWith(spark.api.java.function.Function<java.lang.Object, A>, spark.api.java.function.Function2<T, A, scala.runtime.BoxedUnit>) | |
spark.api.java.JavaRDD<U> mapPartitions(spark.api.java.function.FlatMapFunction<java.util.Iterator<T>, U>, boolean) | |
java.lang.Object take(int) | |
spark.partial.PartialResult<spark.partial.BoundedDouble> countApprox(long, java.lang.Double) | |
java.lang.Object collect() | |
spark.api.java.JavaRDD<U> flatMapWith(spark.api.java.function.Function<java.lang.Object, A>, boolean, spark.api.java.function.Function2<T, A, java.util.List<U>>) | |
spark.api.java.JavaRDD<U> mapPartitionsWithSplit(spark.api.java.function.Function2<java.lang.Object, java.util.Iterator<T>, java.util.Iterator<U>>, boolean) | |
spark.api.java.JavaRDD<U> collect(scala.PartialFunction<T, U>) | |
spark.api.java.JavaRDD<java.lang.Object> glom() | |
spark.api.java.JavaRDD<U> mapWith(spark.api.java.function.Function<java.lang.Object, A>, boolean, spark.api.java.function.Function2<T, A, U>) | |
java.lang.Object takeSample(boolean, int, int) | |
spark.api.java.JavaPairRDD<T, U> cartesian(spark.api.java.JavaRDD<U>) | |
java.lang.String getCheckpointFile() | |
spark.api.java.JavaPairRDD<K, java.util.List<T>> groupBy(spark.api.java.function.Function<T, K>, spark.Partitioner) | |
spark.api.java.JavaRDD<T> filterWith(spark.api.java.function.Function<java.lang.Object, A>, spark.api.java.function.Function2<T, A, java.lang.Object>) | |
java.lang.String name() | |
spark.api.java.JavaRDD<T> setName(java.lang.String) | |
spark.api.java.JavaRDD<T> sample(boolean, java.lang.Double, int) | |
java.lang.Object toArray() | |
java.util.Iterator<T> compute(spark.Partition, spark.TaskContext) | |
spark.api.java.JavaRDD<U> mapPartitionsWithIndex(spark.api.java.function.Function2<java.lang.Object, java.util.Iterator<T>, java.util.Iterator<U>>, boolean) | |
java.util.Map<T, java.lang.Object> countByValue() | |
spark.api.java.JavaRDD<U> map(spark.api.java.function.Function<T, U>) | |
spark.partial.PartialResult<java.util.Map<T, spark.partial.BoundedDouble>> countByValueApprox(long, java.lang.Double) | |
java.util.List<java.lang.String> preferredLocations(spark.Partition) | |
spark.api.java.JavaRDD<T> persist() | |
Missing PairRDD methods | |
void saveAsNewAPIHadoopFile(java.lang.String, java.lang.Class<?>, java.lang.Class<?>, java.lang.Class<? extends org.apache.hadoop.mapreduce.OutputFormat<?, ?>>, org.apache.hadoop.conf.Configuration) | |
void saveAsHadoopFile(java.lang.String, java.lang.Class<?>, java.lang.Class<?>, java.lang.Class<? extends org.apache.hadoop.mapred.OutputFormat<?, ?>>, org.apache.hadoop.mapred.JobConf) | |
spark.api.java.JavaPairRDD<K, scala.Tuple2<V, W>> leftOuterJoin(spark.api.java.JavaPairRDD<K, W>, spark.Partitioner) | |
spark.api.java.JavaPairRDD<K, C> combineByKey(spark.api.java.function.Function<V, C>, spark.api.java.function.Function2<C, V, C>, spark.api.java.function.Function2<C, C, C>, spark.Partitioner, boolean) | |
spark.api.java.JavaPairRDD<K, scala.Tuple2<V, W>> leftOuterJoin(spark.api.java.JavaPairRDD<K, W>, int) | |
spark.api.java.JavaPairRDD<K, V> partitionBy(spark.Partitioner, boolean) | |
void saveAsHadoopFile(java.lang.String) | |
spark.api.java.JavaPairRDD<K, scala.Tuple2<V, W>> leftOuterJoin(spark.api.java.JavaPairRDD<K, W>) | |
spark.api.java.JavaPairRDD<K, scala.Tuple2<V, W>> rightOuterJoin(spark.api.java.JavaPairRDD<K, W>) | |
spark.partial.PartialResult<java.util.Map<K, spark.partial.BoundedDouble>> countByKeyApprox(long, java.lang.Double) | |
spark.api.java.JavaPairRDD<K, V> subtractByKey(spark.api.java.JavaPairRDD<K, W>) | |
void saveAsNewAPIHadoopFile(java.lang.String) | |
spark.api.java.JavaPairRDD<K, V> subtractByKey(spark.api.java.JavaPairRDD<K, W>, int) | |
spark.api.java.JavaPairRDD<K, scala.Tuple2<V, W>> rightOuterJoin(spark.api.java.JavaPairRDD<K, W>, spark.Partitioner) | |
spark.api.java.JavaPairRDD<K, U> flatMapValues(spark.api.java.function.FlatMapFunction<V, U>) | |
spark.api.java.JavaPairRDD<K, V> subtractByKey(spark.api.java.JavaPairRDD<K, W>, spark.Partitioner) | |
java.util.Map<K, V> reduceByKeyToDriver(spark.api.java.function.Function2<V, V, V>) | |
spark.api.java.JavaPairRDD<K, scala.Tuple2<V, W>> rightOuterJoin(spark.api.java.JavaPairRDD<K, W>, int) | |
Missing DoubleRDD methods | |
java.lang.Double sampleStdev() | |
Missing OrderedRDD methods | |
spark.api.java.JavaPairRDD<K, V> sortByKey(boolean, int) | |
Missing SparkContext methods | |
spark.api.java.JavaPairRDD<K, V> newAPIHadoopFile(java.lang.String) | |
java.util.List<java.lang.String> jars() | |
spark.api.java.JavaPairRDD<K, V> hadoopRDD(org.apache.hadoop.mapred.JobConf, java.lang.Class<? extends org.apache.hadoop.mapred.InputFormat<K, V>>, java.lang.Class<K>, java.lang.Class<V>, int) | |
void addSparkListener(spark.scheduler.SparkListener) | |
spark.api.java.JavaPairRDD<K, V> hadoopFile(java.lang.String) | |
int defaultParallelism() | |
java.util.Map<java.lang.String, java.lang.String> environment() | |
int defaultMinSplits() | |
spark.api.java.JavaPairRDD<K, V> sequenceFile(java.lang.String, int, scala.Function0<spark.WritableConverter<K>>, scala.Function0<spark.WritableConverter<V>>) | |
java.util.List<java.lang.String> jarOfObject(java.lang.Object) | |
java.lang.String appName() | |
spark.Accumulable<R, T> accumulableCollection(R, spark.api.java.function.Function<R, scala.collection.generic.Growable<T>>) | |
java.lang.String master() | |
java.lang.String sparkHome() | |
spark.api.java.JavaPairRDD<K, V> hadoopFile(java.lang.String, int) | |
spark.api.java.JavaPairRDD<K, V> hadoopFile(java.lang.String, java.lang.Class<? extends org.apache.hadoop.mapred.InputFormat<K, V>>, java.lang.Class<K>, java.lang.Class<V>, int) | |
java.util.List<java.lang.String> jarOfClass(java.lang.Class<?>) | |
spark.api.java.JavaRDD<T> union(java.util.List<spark.api.java.JavaRDD<T>>) | |
java.util.Map<java.lang.String, scala.Tuple2<java.lang.Object, java.lang.Object>> getExecutorMemoryStatus() | |
java.util.Map<spark.scheduler.Stage, spark.scheduler.StageInfo> getStageInfo() | |
Missing StreamingContext methods | |
spark.streaming.PairDStreamFunctions<K, V> toPairDStreamFunctions(spark.streaming.api.java.JavaPairDStream<K, V>) | |
spark.streaming.api.java.JavaDStream<twitter4j.Status> twitterStream(twitter4j.auth.Authorization, java.util.List<java.lang.String>, spark.storage.StorageLevel) | |
spark.streaming.api.java.JavaPairDStream<K, V> fileStream(java.lang.String, spark.api.java.function.Function<org.apache.hadoop.fs.Path, java.lang.Object>, boolean) | |
spark.streaming.api.java.JavaDStream<T> union(java.util.List<spark.streaming.api.java.JavaDStream<T>>) | |
spark.streaming.api.java.JavaDStream<T> zeroMQStream(java.lang.String, akka.zeromq.Subscribe, spark.api.java.function.FlatMapFunction<java.util.List<java.util.List<java.lang.Object>>, T>, spark.storage.StorageLevel, akka.actor.SupervisorStrategy) | |
spark.streaming.api.java.JavaDStream<T> networkStream(spark.streaming.dstream.NetworkReceiver<T>) | |
void registerOutputStream(spark.streaming.api.java.JavaDStream<?>) | |
spark.SparkContext sc() | |
spark.streaming.api.java.JavaDStream<T> socketStream(java.lang.String, int, spark.api.java.function.FlatMapFunction<java.io.InputStream, T>, spark.storage.StorageLevel) | |
spark.SparkContext sparkContext() | |
spark.streaming.input.KafkaFunctions toKafkaFunctions(spark.streaming.StreamingContext) | |
void registerInputStream(spark.streaming.dstream.InputDStream<?>) | |
Missing DStream methods | |
void saveAsTextFiles(java.lang.String, java.lang.String) | |
spark.streaming.api.java.JavaDStream<U> map(spark.api.java.function.Function<T, U>) | |
spark.streaming.api.java.JavaDStream<java.lang.Object> count() | |
java.util.List<spark.api.java.JavaRDD<T>> slice(spark.streaming.Interval) | |
void foreach(spark.api.java.function.Function2<spark.api.java.JavaRDD<T>, spark.streaming.Time, scala.runtime.BoxedUnit>) | |
void saveAsObjectFiles(java.lang.String, java.lang.String) | |
spark.streaming.Duration slideDuration() | |
spark.streaming.api.java.JavaPairDStream<T, java.lang.Object> countByValueAndWindow(spark.streaming.Duration, spark.streaming.Duration, int) | |
spark.streaming.api.java.JavaDStream<T> filter(spark.api.java.function.Function<T, java.lang.Object>) | |
spark.streaming.api.java.JavaDStream<T> checkpoint(spark.streaming.Duration) | |
spark.streaming.api.java.JavaDStream<java.lang.Object> countByWindow(spark.streaming.Duration, spark.streaming.Duration) | |
spark.streaming.api.java.JavaDStream<java.lang.Object> glom() | |
spark.streaming.api.java.JavaDStream<U> mapPartitions(spark.api.java.function.FlatMapFunction<java.util.Iterator<T>, U>, boolean) | |
scala.collection.immutable.List<spark.streaming.api.java.JavaDStream<?>> dependencies() | |
spark.streaming.api.java.JavaPairDStream<T, java.lang.Object> countByValue(int) | |
spark.streaming.api.java.JavaDStream<T> reduceByWindow(spark.api.java.function.Function2<T, T, T>, spark.streaming.Duration, spark.streaming.Duration) | |
spark.streaming.StreamingContext ssc() | |
void register() | |
void foreach(spark.api.java.function.VoidFunction<spark.api.java.JavaRDD<T>>) | |
Missing PairDStream methods | |
spark.streaming.api.java.JavaPairDStream<K, V> reduceByKeyAndWindow(spark.api.java.function.Function2<V, V, V>, spark.streaming.Duration, spark.streaming.Duration) | |
spark.streaming.api.java.JavaPairDStream<K, V> reduceByKeyAndWindow(spark.api.java.function.Function2<V, V, V>, spark.api.java.function.Function2<V, V, V>, spark.streaming.Duration, spark.streaming.Duration, int, spark.api.java.function.Function<scala.Tuple2<K, V>, java.lang.Object>) | |
spark.streaming.api.java.JavaPairDStream<K, S> updateStateByKey(spark.api.java.function.Function2<java.util.List<V>, S, S>) | |
spark.streaming.api.java.JavaPairDStream<K, S> updateStateByKey(spark.api.java.function.Function2<java.util.List<V>, S, S>, int) | |
spark.HashPartitioner defaultPartitioner(int) | |
spark.streaming.api.java.JavaPairDStream<K, S> updateStateByKey(spark.api.java.function.FlatMapFunction<java.util.Iterator<scala.Tuple3<K, java.util.List<V>, S>>, scala.Tuple2<K, S>>, spark.Partitioner, boolean) | |
spark.streaming.api.java.JavaPairDStream<K, V> reduceByKeyAndWindow(spark.api.java.function.Function2<V, V, V>, spark.streaming.Duration) | |
spark.streaming.api.java.JavaPairDStream<K, V> reduceByKeyAndWindow(spark.api.java.function.Function2<V, V, V>, spark.streaming.Duration, spark.streaming.Duration, spark.Partitioner) | |
spark.streaming.api.java.JavaPairDStream<K, S> updateStateByKey(spark.api.java.function.Function2<java.util.List<V>, S, S>, spark.Partitioner) | |
spark.streaming.api.java.JavaPairDStream<K, V> reduceByKeyAndWindow(spark.api.java.function.Function2<V, V, V>, spark.api.java.function.Function2<V, V, V>, spark.streaming.Duration, spark.streaming.Duration, spark.Partitioner, spark.api.java.function.Function<scala.Tuple2<K, V>, java.lang.Object>) | |
spark.streaming.StreamingContext ssc() | |
spark.streaming.api.java.JavaPairDStream<K, V> reduceByKeyAndWindow(spark.api.java.function.Function2<V, V, V>, spark.streaming.Duration, spark.streaming.Duration, int) | |
spark.streaming.api.java.JavaPairDStream<K, U> flatMapValues(spark.api.java.function.FlatMapFunction<V, U>) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment