Created
October 28, 2019 11:55
-
-
Save JoshuaC3/b3b656120540c2962aecc9dd49c07358 to your computer and use it in GitHub Desktop.
LightGBM train with subset - from: https://github.com/microsoft/LightGBM/issues/2240#issuecomment-505305757
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import lightgbm as lgb | |
# generate simulation data | |
para=np.random.random((5000, 2)) | |
data=np.zeros((10000,10)) | |
for i in range(5000): | |
mu, sigma=para[i,:] | |
s=np.random.normal(mu, sigma, 1000) | |
data[i,:]=np.histogram(s, bins=10, density=False,range=[-1,1])[0] | |
data_shuffle=data[:5000,:].copy() | |
for i in range(5000): | |
np.random.shuffle(data_shuffle[i,:]) | |
data[5000:,:]=data_shuffle | |
train_data = lgb.Dataset(data,label=[1]*5000+[0]*5000,free_raw_data=False) | |
train_data.save_binary('train_data.bin') | |
train_data = lgb.Dataset("train_data.bin") | |
subset_index=np.random.choice(np.arange(10000), 5000, replace=False) | |
subset_train_data_1=train_data.subset(subset_index).construct() | |
# generate new subset_index | |
subset_index=np.random.choice(np.arange(10000), 5000, replace=False) | |
subset_train_data_2=train_data.subset(subset_index).construct() | |
train_data_3 = lgb.Dataset(data,label=[1]*5000+[0]*5000,free_raw_data=False, reference=train_data) | |
subset_train_data_3=train_data_3.subset(subset_index).construct() | |
subset_train_data_4=lgb.Dataset(data[subset_index,:],label=np.array([1]*5000+[0]*5000)[subset_index],\ | |
free_raw_data=False,reference=train_data).construct() | |
params = { | |
'boosting_type': 'gbdt', | |
'objective': 'binary', | |
'metric': ["binary_error",'binary_logloss'], | |
'metric_freq': 10, | |
'num_leaves': 31, | |
'num_threads': 1, | |
'learning_rate': 0.1, | |
'feature_fraction': 1, | |
'boost_from_average': False, | |
'verbose': 1 | |
} | |
# train using subset_train_data_1 and it works | |
gbm = lgb.train(params=params, | |
train_set=subset_train_data_1, | |
num_boost_round=10, | |
valid_sets=[train_data], | |
keep_training_booster=True) | |
# continue training with subset_train_data_2, fail | |
gbm = lgb.train(params=params, | |
train_set=subset_train_data_2, | |
num_boost_round=10, | |
valid_sets=[train_data], | |
init_model=gbm) | |
# continue training with subset_train_data_3, fail | |
gbm = lgb.train(params=params, | |
train_set=subset_train_data_3, | |
num_boost_round=10, | |
valid_sets=[train_data], | |
init_model=gbm) | |
# continue training with subset_train_data_4, fail | |
gbm = lgb.train(params=params, | |
train_set=subset_train_data_4, | |
num_boost_round=10, | |
valid_sets=[train_data], | |
init_model=gbm) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment