Created
June 30, 2020 12:02
-
-
Save JossWhittle/0554f2c4c5082963b62b3f6a36917589 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class LinearWarmUpAndCosineDecay(tf.keras.optimizers.schedules.LearningRateSchedule): | |
def __init__(self, initial_learning_rate, warmup_steps, total_steps, alpha, name=None): | |
super(LinearWarmUpAndCosineDecay, self).__init__(name=name) | |
self.warmup_steps = warmup_steps | |
self.total_steps = total_steps | |
self.alpha = alpha | |
self.initial_learning_rate = initial_learning_rate | |
self.min_learning_rate = self.initial_learning_rate * self.alpha | |
self.cosine_decay_fn = tf.keras.experimental.CosineDecay( | |
self.initial_learning_rate, (self.total_steps - self.warmup_steps), alpha=self.alpha, | |
name='CosineDelayAfterLinearWarmup') | |
def linear_warmup(self, step): | |
return self.min_learning_rate + (step * ((self.init_learning_rate - self.min_learning_rate) / self.warmup_steps)) | |
def cosine_decay(self, step): | |
return self.cosine_decay_fn(step - self.warmup_steps) | |
def __call__(self, step): | |
return tf.where(tf.less(step, self.warmup_steps), self.linear_warmup(step), self.cosine_decay(step)) | |
def get_config(self): | |
return { | |
'initial_learning_rate': self.initial_learning_rate, | |
'warmup_steps': self.warmup_steps, | |
'total_steps': self.total_steps, | |
'alpha': self.alpha, | |
'name': self.name | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment