Last active
April 12, 2020 21:35
-
-
Save JossWhittle/c2d49f8fc855f607dfd3a2d7ce4e61b1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import tensorflow as tf | |
class LogMetrics(tf.keras.callbacks.Callback): | |
def __init__(self, log_dir, loss, metrics, steps, dataset, training=False): | |
super(LogMetrics, self).__init__() | |
self.log_dir = log_dir | |
self.metrics = metrics | |
self.steps = steps | |
self.dataset = iter(dataset) | |
self.training = training | |
self.writer = tf.summary.create_file_writer(log_dir) | |
self.loss = loss | |
self.loss_metric = tf.keras.metrics.Mean(name='loss') | |
self.history = {} | |
self.history['loss'] = [] | |
for metric in self.metrics: | |
self.history[metric.name] = [] | |
def on_epoch_end(self, epoch, logs=None): | |
self.loss_metric.reset_states() | |
for metric in self.metrics: | |
metric.reset_states() | |
for step in range(self.steps): | |
x, y_true = next(self.dataset) | |
y_pred = self.model(x, training=self.training) | |
self.loss_metric.update_state(self.loss(y_true, y_pred)) | |
for metric in self.metrics: | |
metric.update_state(y_true, y_pred) | |
with self.writer.as_default(): | |
tf.summary.scalar(self.loss_metric.name, self.loss_metric.result(), step=epoch) | |
self.history['loss'] += [self.loss_metric.result()] | |
self.loss_metric.reset_states() | |
for metric in self.metrics: | |
tf.summary.scalar(metric.name, metric.result(), step=epoch) | |
self.history[metric.name] += [metric.result()] | |
metric.reset_states() | |
self.writer.flush() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment