Skip to content

Instantly share code, notes, and snippets.

@Jsevillamol
Created February 10, 2016 15:38
Show Gist options
  • Save Jsevillamol/60e9c9bfee0d3ee25873 to your computer and use it in GitHub Desktop.
Save Jsevillamol/60e9c9bfee0d3ee25873 to your computer and use it in GitHub Desktop.
Prueba ejercicio 9 c
<p>Sea <script id="MathJax-Element-10368" type="math/tex">f:\mathbb{Z}[t]\to \mathbb{Z}[\sqrt 3]</script>, <script id="MathJax-Element-10369" type="math/tex">p(x)\mapsto p(\sqrt 3)</script>.</p>
<p>Claramente <script id="MathJax-Element-10370" type="math/tex">f</script> es sobreyectiva. Veamos que <script id="MathJax-Element-10371" type="math/tex">ker(f)=(t^2-3)</script>.</p>
<p>Claramente la inclusión <script id="MathJax-Element-10372" type="math/tex">\supset</script> se da.</p>
<p>Ahora, sea <script id="MathJax-Element-10373" type="math/tex">p\in ker f</script>. Por pseudodivisión, <script id="MathJax-Element-10374" type="math/tex">p(t)=(t^2-3)q(x)+r(x)</script>, con <script id="MathJax-Element-10375" type="math/tex">deg(r)<2</script>, y por tanto <script id="MathJax-Element-10376" type="math/tex">p(\sqrt 3)=r(\sqrt 3)=a+b\sqrt 3=0</script>. Como la suma de dos números racionales ha de ser racional, y <script id="MathJax-Element-10377" type="math/tex">\sqrt 3</script> es irracional, no queda más remedio que <script id="MathJax-Element-10378" type="math/tex">a=0</script>, <script id="MathJax-Element-10379" type="math/tex">b=0</script>. Por tanto, <script id="MathJax-Element-10380" type="math/tex">p\in (t^2-3)</script>, y concluímos que <script id="MathJax-Element-10381" type="math/tex">ker(f)=(t^2-3)</script>.</p>
<p>Por tanto, por el primer teorema de isomorfía, <script id="MathJax-Element-10382" type="math/tex">\frac{\mathbb{Z}[t]}{(t²-3)}\cong \mathbb{Z}[\sqrt 3]</script>.</p>
<p><script id="MathJax-Element-10383" type="math/tex">Lema</script>: Si <script id="MathJax-Element-10384" type="math/tex">f:A\to B</script> es un isomorfismo y <script id="MathJax-Element-10385" type="math/tex">z\in A</script>, <script id="MathJax-Element-10386" type="math/tex">\frac{A}{(z)}\cong \frac{B}{(f(z))}</script>. <br>
<script id="MathJax-Element-10387" type="math/tex">Demostración</script>: es inmediato considerando el isomorfismo inducido, <script id="MathJax-Element-10388" type="math/tex">f':\frac{A}{(z)}\to \frac{B}{(f(z))}</script>, <script id="MathJax-Element-10389" type="math/tex">a+zA\mapsto f(a)+f(z)B</script>. </p>
<p><script id="MathJax-Element-10390" type="math/tex">f'</script> está bien definido, porque <br>
<script id="MathJax-Element-10391" type="math/tex; mode=display">a+zA=a'+zA\implies a-a'\in zA\implies f(a)-f(a')\in f(z)A\implies\\ f'(a+zA)=f'(a+zB)</script></p>
<p><script id="MathJax-Element-10392" type="math/tex">f'</script> es claramente sobreyectivo, por serlo <script id="MathJax-Element-10393" type="math/tex">f</script>. <br>
Y <script id="MathJax-Element-10394" type="math/tex">f'</script> es inyectivo, ya que <br>
<script id="MathJax-Element-10395" type="math/tex; mode=display">
f'(a+zA)=f'(a+zB)\implies f(a)+f(z)B=f(a')+f(z)B\implies f(a)-f(a')\in f(z)B\implies \exists b\in B\quad f(a-a')=f(z* f^{-1}(b))\implies \exists c\in A\quad a-a'=z* c\implies a+zA=a'+zA
</script></p>
<p>Por tanto, <script id="MathJax-Element-10396" type="math/tex">\frac{\mathbb{Z}_p[t]}{(t²-3)}=\frac{\mathbb{Z}[t]}{(t²-3, p)}\cong \frac{\mathbb{Z}[\sqrt 3]}{(p)}</script>. Como ambos son DFUs, un elemento es primo sii es irreducible. Y un elemento es primo sii el cociente de su cuerpo por su ideal principal es dominio. </p>
<p>De aquí deducimos facilmente que <script id="MathJax-Element-10397" type="math/tex">t^2-3</script> es irreducible en <script id="MathJax-Element-10398" type="math/tex">\mathbb{Z}_p[t]</script> sii <script id="MathJax-Element-10399" type="math/tex">p</script> lo es en <script id="MathJax-Element-10400" type="math/tex">\mathbb{Z}[\sqrt 3]</script>. <script id="MathJax-Element-10401" type="math/tex">\Box</script></p>
<blockquote>
<p>Written with <a href="https://stackedit.io/">StackEdit</a>.</p>
</blockquote>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment