Created
February 10, 2016 15:38
-
-
Save Jsevillamol/60e9c9bfee0d3ee25873 to your computer and use it in GitHub Desktop.
Prueba ejercicio 9 c
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<p>Sea <script id="MathJax-Element-10368" type="math/tex">f:\mathbb{Z}[t]\to \mathbb{Z}[\sqrt 3]</script>, <script id="MathJax-Element-10369" type="math/tex">p(x)\mapsto p(\sqrt 3)</script>.</p> | |
<p>Claramente <script id="MathJax-Element-10370" type="math/tex">f</script> es sobreyectiva. Veamos que <script id="MathJax-Element-10371" type="math/tex">ker(f)=(t^2-3)</script>.</p> | |
<p>Claramente la inclusión <script id="MathJax-Element-10372" type="math/tex">\supset</script> se da.</p> | |
<p>Ahora, sea <script id="MathJax-Element-10373" type="math/tex">p\in ker f</script>. Por pseudodivisión, <script id="MathJax-Element-10374" type="math/tex">p(t)=(t^2-3)q(x)+r(x)</script>, con <script id="MathJax-Element-10375" type="math/tex">deg(r)<2</script>, y por tanto <script id="MathJax-Element-10376" type="math/tex">p(\sqrt 3)=r(\sqrt 3)=a+b\sqrt 3=0</script>. Como la suma de dos números racionales ha de ser racional, y <script id="MathJax-Element-10377" type="math/tex">\sqrt 3</script> es irracional, no queda más remedio que <script id="MathJax-Element-10378" type="math/tex">a=0</script>, <script id="MathJax-Element-10379" type="math/tex">b=0</script>. Por tanto, <script id="MathJax-Element-10380" type="math/tex">p\in (t^2-3)</script>, y concluímos que <script id="MathJax-Element-10381" type="math/tex">ker(f)=(t^2-3)</script>.</p> | |
<p>Por tanto, por el primer teorema de isomorfía, <script id="MathJax-Element-10382" type="math/tex">\frac{\mathbb{Z}[t]}{(t²-3)}\cong \mathbb{Z}[\sqrt 3]</script>.</p> | |
<p><script id="MathJax-Element-10383" type="math/tex">Lema</script>: Si <script id="MathJax-Element-10384" type="math/tex">f:A\to B</script> es un isomorfismo y <script id="MathJax-Element-10385" type="math/tex">z\in A</script>, <script id="MathJax-Element-10386" type="math/tex">\frac{A}{(z)}\cong \frac{B}{(f(z))}</script>. <br> | |
<script id="MathJax-Element-10387" type="math/tex">Demostración</script>: es inmediato considerando el isomorfismo inducido, <script id="MathJax-Element-10388" type="math/tex">f':\frac{A}{(z)}\to \frac{B}{(f(z))}</script>, <script id="MathJax-Element-10389" type="math/tex">a+zA\mapsto f(a)+f(z)B</script>. </p> | |
<p><script id="MathJax-Element-10390" type="math/tex">f'</script> está bien definido, porque <br> | |
<script id="MathJax-Element-10391" type="math/tex; mode=display">a+zA=a'+zA\implies a-a'\in zA\implies f(a)-f(a')\in f(z)A\implies\\ f'(a+zA)=f'(a+zB)</script></p> | |
<p><script id="MathJax-Element-10392" type="math/tex">f'</script> es claramente sobreyectivo, por serlo <script id="MathJax-Element-10393" type="math/tex">f</script>. <br> | |
Y <script id="MathJax-Element-10394" type="math/tex">f'</script> es inyectivo, ya que <br> | |
<script id="MathJax-Element-10395" type="math/tex; mode=display"> | |
f'(a+zA)=f'(a+zB)\implies f(a)+f(z)B=f(a')+f(z)B\implies f(a)-f(a')\in f(z)B\implies \exists b\in B\quad f(a-a')=f(z* f^{-1}(b))\implies \exists c\in A\quad a-a'=z* c\implies a+zA=a'+zA | |
</script></p> | |
<p>Por tanto, <script id="MathJax-Element-10396" type="math/tex">\frac{\mathbb{Z}_p[t]}{(t²-3)}=\frac{\mathbb{Z}[t]}{(t²-3, p)}\cong \frac{\mathbb{Z}[\sqrt 3]}{(p)}</script>. Como ambos son DFUs, un elemento es primo sii es irreducible. Y un elemento es primo sii el cociente de su cuerpo por su ideal principal es dominio. </p> | |
<p>De aquí deducimos facilmente que <script id="MathJax-Element-10397" type="math/tex">t^2-3</script> es irreducible en <script id="MathJax-Element-10398" type="math/tex">\mathbb{Z}_p[t]</script> sii <script id="MathJax-Element-10399" type="math/tex">p</script> lo es en <script id="MathJax-Element-10400" type="math/tex">\mathbb{Z}[\sqrt 3]</script>. <script id="MathJax-Element-10401" type="math/tex">\Box</script></p> | |
<blockquote> | |
<p>Written with <a href="https://stackedit.io/">StackEdit</a>.</p> | |
</blockquote> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment