Created
September 8, 2021 16:11
-
-
Save Jsevillamol/a07faa82ad9edd5a333b67d0f42ff998 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
mu_A = np.log(10) | |
sigma_A = 0.1 | |
mu_B = np.log(20) | |
sigma_B = 0.1 | |
def lognorm_pdf(x,mu,sigma): | |
return np.exp(-(np.log(x)-mu)**2/(2*(sigma**2))) / (x*sigma*np.sqrt(2*np.pi)) | |
f_A = lambda x : lognorm_pdf(x, mu_A, sigma_A) | |
f_B = lambda x : lognorm_pdf(x, mu_B, sigma_B) | |
import scipy.integrate as integrate | |
f_aux = lambda x : np.sqrt(f_A(x)) * np.sqrt(f_B(x)) | |
denominator, error = integrate.quad(f_aux, 0.1, np.inf) | |
assert np.abs(denominator/100) > error, f"The error is too big! {denominator, error}" | |
f = lambda x : f_aux(x) / denominator | |
expected_value, error = integrate.quad(lambda x : x*f(x), 0, np.inf) | |
assert np.abs(expected_value/100) > error, f"The error is too big! {denominator, error}" | |
print(f"The expected value of the aggregated density is {expected_value}") | |
mean_A = np.exp(mu_A + sigma_A**2 / 2) | |
mean_B = np.exp(mu_B + sigma_B**2 / 2) | |
print(f"The mean of the individual distributions is {mean_A, mean_B}") | |
geo_mean = np.sqrt(mean_A*mean_B) | |
print(f"The geometric mean of the means of the individual distributions is {geo_mean}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment