Created
October 28, 2018 13:46
-
-
Save Jsevillamol/d0c5018bee158de4f514c6f6edd21978 to your computer and use it in GitHub Desktop.
CNN RNN model with masking in Keras
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Create model | |
model = Sequential() | |
input_shape = (n_tel, img_w, img_h, n_channels) | |
# mask the inputs that correspond to padding | |
model.add(Masking(mask_value=0., input_shape=input_shape)) | |
# Add CNN feature extractor | |
model.add(TimeDistributed( | |
Conv2D( | |
filters=16, | |
kernel_size=(3,3), | |
padding='same', | |
activation='relu' | |
))) | |
model.add(TimeDistributed( | |
Conv2D( | |
filters=32, | |
kernel_size=(3,3), | |
padding='same', | |
activation='relu' | |
) | |
)) | |
model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2), strides=None))) | |
model.add(Flatten()) | |
# Add LSTM feature combinator | |
model.add(LSTM(units=100)) | |
# Add FCN classifier | |
model.add(Dense(units=100, activation='relu')) | |
model.add(Dense(1, activation='sigmoid')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment