Created
August 1, 2023 09:19
-
-
Save JupyterJones/ab9225829a213ee4cc234d04e9a7428e to your computer and use it in GitHub Desktop.
quantize images to a specific palette Python cv2
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import numpy as np | |
from moviepy.editor import VideoFileClip | |
from sklearn.cluster import KMeans | |
# Define your own color palette as an array of RGB values | |
palette = np.array([[255, 0, 0], # Red | |
[0, 255, 0], # Green | |
[0, 0, 255], # Blue | |
[255, 255, 0], # Yellow | |
[255, 0, 255], # Magenta | |
[0, 255, 255]]) # Cyan | |
def quantize_to_palette(image, palette): | |
data = np.float32(image).reshape((-1, 3)) | |
# Perform k-means clustering | |
kmeans = KMeans(n_clusters=len(palette), random_state=0).fit(data) | |
labels = kmeans.labels_ | |
centers = kmeans.cluster_centers_ | |
# Convert each pixel in the image to its nearest cluster center | |
quantized_data = centers[labels].astype(np.uint8) | |
return quantized_data.reshape(image.shape) | |
def process_frame(frame): | |
# Convert the frame to RGB | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
frame_quantized = quantize_to_palette(frame_rgb, palette) | |
# Convert the frame back to BGR | |
frame_bgr = cv2.cvtColor(frame_quantized, cv2.COLOR_RGB2BGR) | |
return frame_bgr | |
# Input video path | |
input_video_path = "/home/jack/Desktop/StoryMaker/static/videos/video_in_a_video-02.mp4" | |
# Output video path | |
output_video_path = "leonnardo_output_video.mp4" | |
# Process the video frame by frame and apply the quantization | |
clip = VideoFileClip(input_video_path) | |
# Print video details for debugging | |
print("Duration:", clip.duration) | |
print("FPS:", clip.fps) | |
# Process each frame in the video using process_frame function | |
new_clip = clip.fl_image(process_frame) | |
# Set the duration of the new clip to match the original clip | |
new_clip = new_clip.set_duration(clip.duration) | |
# Write the processed video without sound | |
new_clip.write_videofile(output_video_path, codec="libx264", audio=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment