Created
August 11, 2021 06:48
-
-
Save JustinSDK/ed1ae5364a9ca4d7f10012d19795d8f3 to your computer and use it in GitHub Desktop.
NumPy API至PyTorch API
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import cv2 | |
import matplotlib.pyplot as plt | |
def model(x, w, b): | |
return w * x + b | |
def mse_loss(p, y): | |
return ((p - y) ** 2).mean() | |
def grad_f(x, y, p, w, b): | |
# 基於損失函數手動偏微分 | |
def dloss_dp(p, y): | |
return (2 * (p - y)) / p.size(0) | |
def dp_dw(x, w, b): | |
return x | |
def dp_db(x, w, b): | |
return 1.0 | |
# 反向傳播計算梯度 | |
dloss_dtp = dloss_dp(p, y) | |
dloss_dw = dloss_dtp * dp_dw(x, w, b) | |
dloss_db = dloss_dtp * dp_db(x, w, b) | |
return torch.tensor([dloss_dw.sum(), dloss_db.sum()]) | |
def training_loop(epochs, lr, params, x, y, verbose = False): | |
for epoch in range(1, epochs + 1): | |
w, b = params | |
p = model(x, w, b) | |
grad = grad_f(x, y, p, w, b) | |
params = params - lr * grad | |
if verbose: | |
print('週期', epoch, '--') | |
print('\t損失:', float(mse_loss(p, y))) | |
print('\t模型參數:', params) | |
return params | |
# https://openhome.cc/Gossip/DCHardWay/images/PolynomialRegression-1.JPG | |
img = torch.from_numpy(cv2.imread('PolynomialRegression-1.JPG', cv2.IMREAD_GRAYSCALE)) # 轉為張量 | |
idx = torch.where(img < 127) # 黑點的索引 | |
x = idx[1] | |
y = -idx[0] + img.shape[0] # 反轉 y 軸 | |
plt.gca().set_aspect(1) | |
plt.scatter(x, y) | |
w, b = training_loop( | |
epochs = 100, | |
lr = 0.001, | |
params = torch.tensor([1.0, 0.0]), | |
x = x, | |
y = y | |
) | |
x = torch.linspace(0, 50, 50) | |
y = w * x + b | |
plt.plot(x, y) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment