Skip to content

Instantly share code, notes, and snippets.

@JustinShenk
Created December 9, 2018 18:40
Show Gist options
  • Save JustinShenk/9e9ee2a46a36990014fbfdcad6499f1a to your computer and use it in GitHub Desktop.
Save JustinShenk/9e9ee2a46a36990014fbfdcad6499f1a to your computer and use it in GitHub Desktop.
Convert TensorFlow .ckpt to .pb for https://github.com/lengstrom/fast-style-transfer
#! /usr/bin/env python3
"""Run from root directory of repo https://github.com/lengstrom/fast-style-transfer to
create a .pb for use with OpenVINO.
"""
import sys
sys.path.insert(0, 'src')
import transform
import argparse
import tensorflow as tf
import os
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import graph_io
def protobuf_from_checkpoint(ckpt_file, image_shape, batch_size, output_name):
if not os.path.isfile(ckpt_file):
raise ValueError(f'File "{ckpt_file}" does not exist or is not a file.')
# create the tf Session
sess = tf.Session()
# Compute the shape of the input placeholder. This shape is what the serialized model can
# process. For other input shapes you will have to resize the images or make a new model export
batch_shape = [batch_size] + image_shape
img_placeholder = tf.placeholder(tf.float32, shape=batch_shape, name='img_placeholder')
# create the network to the variables are in the global scope
preds = transform.net(img_placeholder) # noqa
saver = tf.train.Saver()
# load our checkpoint into the variables
saver.restore(sess, ckpt_file)
# get the tf graph and retrieve operation names
graph = tf.get_default_graph()
op_names = [op.name for op in graph.get_operations()]
# convert the protobuf GraphDef to a GraphDef that has no variables but just constants with the
# current values.
output_graph_def = graph_util.convert_variables_to_constants(
sess,
graph.as_graph_def(), op_names)
# dump GraphDef to file
graph_io.write_graph(output_graph_def, './', output_name, as_text=False)
sess.close()
def main():
# parse required aguments
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--file', help='The checkpoint file to convert.', type=str,
required=True,
metavar='checkpoint.ckpt')
parser.add_argument('-s', '--image-shape',
help='Shape of the image the network processes (H, W, C)',
nargs=3, metavar='size', required=True)
parser.add_argument('-b', '--batch-size', help='Batch size the network processes', type=int,
default=1)
parser.add_argument('-o', '--output-name', help='Name of the output file. '
'The name is relative to the current directory.',
type=str,
default='model.pb')
args = parser.parse_args()
protobuf_from_checkpoint(args.file, args.image_shape, args.batch_size, args.output_name)
print(f'./{args.output_name} written.')
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment