Last active
December 5, 2020 17:01
-
-
Save Justus-coded/210ae38a0a615be976f8aa2e23fa4243 to your computer and use it in GitHub Desktop.
Hyperparameter tuning using Grid Search
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#import libraries | |
from sklearn import datasets | |
from catboost import CatBoostClassifier | |
from sklearn.model_selection import GridSearchCV | |
# load data | |
cancer = datasets.load_breast_cancer() | |
# target | |
y = cancer.target | |
# features | |
X = cancer.data | |
#Instantiate CatBoostClassifier | |
cbc = CatBoostClassifier() | |
#create the grid | |
grid = {'max_depth': [3,4,5],'n_estimators':[100, 200, 300]} | |
#Instantiate GridSearchCV | |
gscv = GridSearchCV (estimator = cbc, param_grid = grid, scoring ='accuracy', cv = 5) | |
#fit the model | |
gscv.fit(X,y) | |
#returns the estimator with the best performance | |
print(gscv.best_estimator_) | |
#returns the best score | |
print(gscv.best_score_) | |
#returns the best parameters | |
print(gscv.best_params_) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment